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MOTIVQTIOH Evaluation Cost for a Single Network
= Neural Architecture Search (NAS) is about " emsereien ]

finding high-performance neural networks. Hours or more
» Early NAS methods have high search cost: eI e l ~1 minute
®» There were several responses to this cost:
» Supernetworks show significant speed-up. Query AP | ~1 second

Tabular NAS-Benchmarks with known
performance are faster.

» | ow-cost performance-estimating
predictors build atop of benchmarks.

®» EXisting performance predictors have a
weakness:

®» Designed around benchmark-specific
network encodings.

= | ack of generalizability.
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Contributions

A General-Purpose Transferable Predictor NAS:

» Transferable Computational Graph (CG)
architecture representation.

» Semi-supervised graph encoder using Confrastive
earning (CL) with Laplacian Eigenvalues.
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our scheme:

'
' [Conv2D | [Conv2D| [Maxpool |
'

» Higher rank correlation than other generalizable
prediction methods.

» Find high-performance architectures on several
benchmarks.

/ One Model, Easy to Transfer

» Find beftter architectures faster; using fewer queries
than other neural predictors.

» Extend beyond CIFAR-10 benchmarks to find a
MobileNetV3 architecture with obtains 79.2% top-1

accuracy on ImageNet. su @
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\ - Op type (Categorical): Conv2D

- Kernel size (Categorical): 3

Conv2D }** | - /O HWC sizes (Array): [32,16,32,16,64,128]
l - Bias enabled(Categorical): True

Maxpool f=«««uf.......... {- Op type (Categorical): Maxpool

Ralll}-.. { Op type (Categorical):  ReLU

{- Op type (Categorical): Concat

Concat ----------

7

» [ 9., RelU, pooling, concat or add.

UBC| = Weighted: Have weights.
— = ®» Conv, MatMul, etc.

- 1/0 HWC sizes(Array): [16,16,16,16,128,128]

- 1/0 HWC sizes(Array): [16,16,16,16,128,128] *

- 1/0 HWC sizes(Array): [16,16,16,16,128,256]
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Our Approach: Computational Graphs

_| Encoding |
NNs ™.
Y Type | Kernel |I/O HWC | Bias
4 _Type /0 HWC
‘4_Type /0 HWC "
Encoding vl _Type /0 HWC GNN
NNs N

Two types of nodes: Regular and Weighted
» Regular: Do not have learnable parameters.

» Extract /O HWC dimensions, and operation type.

Edge Features

» Extract further information like weight dimensions, bias Boolean.
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Semi-Supervised Contrastive Learning

ldea of Contrastive Learning: Similar data
samples should have similar representations:

exXp ( Sim (ZZ y % 7 ) ) Laplacian Eigenvalues o

i Calculale Topological Slmllarlty

Xi,j = log :
o ZT#Z. exp(sim(z;, z,))
Question2 How to determine similarity for CGs? o
« Our approach: Laplacian Eigenvalues from s(i:nggr
adjacency matrix, as a spectral distance: |

Distance(i, ) = a4(i, )
( ) _

= Softmax(o,(i,*))

From here we can compute a Confrosﬁve Loss:

Lop = — Z Z alVxi s

1€l seP (1)

Graph
Features

Graph Proj. (;')
Encoder MLP e

Graph -
Embeddings Lo

Graph Praj.
Encoder MLP

L Predictor Features }
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Experimental Setup

1. NAS-Benchmark Rank Correlation Evaluation

» Train a CL graph encoder on unlabeled target benchmark dataset.

» Then, frain an MLP predictor head on labeled graphs from other benchmarks.
Fine-tune on some labeled samples from target dataset.

. NAS-Benchmark Search

® Pqir our predictor with an evolutionary search algorithm.

» Find high-performance architectures and compare with other predictors.

3. Generalization to ImageNet Architectures
= Train a CL graph encoder on three NAS-Benchmarks.

» Fine-tune on some ImageNet architectures and perform search.
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Ranking Correlation Test
SRCC on NAS-Benchmarks [Higher is beftter]
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» Compare to Zero-Cost Proxies (ZCP) [Abdelfattah et al., 2021]

» /CPs calculate gradient heuristics which can correlate with
performance.

» Also consider a simple end-to-end GNN baseline.

» Result: Our CL-based predictor finds higher rank correlation than

7CPs and the GNN. g’é i
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Application Search

Search Rank (Lower is Better)

Search Accuracy (Higher is Better) .
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» Pair our CL graph encoder with a simple evo search algorithm
and find high-performance architectures on NAS-Benchmarks.

» Compare to Random Search baseline and Synflow ZCP.
» Find 94.23% acc/Rank 2 architecture on NAS-Bench-101.
» Find the best NAS-Bench-201 architecture.
» Achieves over 94.8% on NAS-Bench-301.
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Comparison With Related Neural Predictors

» Many other single search space
neural predictors in the literature.

8

» We compare with our method on  °©
NAS-Bench-101. ‘

2

Our method matches others like 0
GA-NAS and BANANAS by finding )
the 2nd best architecture. -
When #queries are taken into 400

consideration, we beat BANANAS.
Only GA-NAS [Changiz Rezaei et 4w
al., 2021], our previous work, uses
fewer queries.
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Application to ImageNet

ImageNet Top-1 Acc [%]

79 //
1
/

OFA-Large Mills et al. 2021, Mills et al. 2021,
Base Insight

79.2 79.2

Cl-fine-tune

Furthermore, our CG-based architecture
representation is not limited to CIFAR-10.

Perform search on Once-for-All (OFA)
[Cai et al., 2020], MobileNetV3 (MBv3) for
ImageNet.

We train a CL graph encoder on samples
from all 3 NAS-Benchmarks.

» Then fine-fune on a small number of
OFA-MBvV3 CGs.

Compare to our previous ADS track
paper in CIKM-21 which evaluated using
a supernetwork (ITminute per arch).

Results: We find an OFA-MBv3
architecture with 79.2% top-1 accuracy,

outperforming the original OFA.
W a
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Conclusion

We propose a general-purpose
predictor for NAS.

» Computational Graphs.
» Conftrastive Learning

» Experiments:
» SRCC
» CIFAR-10 Search
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