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Motivation

 Neural Architecture Search (NAS) is about 

finding high-performance neural networks.

 Early NAS methods have high search cost:

 There were several responses to this cost:

 Supernetworks show significant speed-up.

 Tabular NAS-Benchmarks with known 
performance are faster.

 Low-cost performance-estimating 
predictors build atop of benchmarks.

 Existing performance predictors have a 

weakness:

 Designed around benchmark-specific 

network encodings.

 Lack of generalizability. 
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Contributions

A General-Purpose Transferable Predictor NAS:

 Transferable Computational Graph (CG) 

architecture representation.

 Semi-supervised graph encoder using Contrastive 

Learning (CL) with Laplacian Eigenvalues.

 Experimental findings demonstrate the benefits of 

our scheme:

 Higher rank correlation than other generalizable 
prediction methods.

 Find high-performance architectures on several 

benchmarks.

 Find better architectures faster; using fewer queries 
than other neural predictors.

 Extend beyond CIFAR-10 benchmarks to find a 
MobileNetV3 architecture with obtains 79.2% top-1 
accuracy on ImageNet.



Our Approach: Computational Graphs

Two types of nodes: Regular and Weighted

 Regular: Do not have learnable parameters.

 E.g., ReLU, pooling, concat or add. 

 Extract I/O HWC dimensions, and operation type.

 Weighted: Have weights.

 Conv, MatMul, etc.

 Extract further information like weight dimensions, bias Boolean.



Semi-Supervised Contrastive Learning

Idea of Contrastive Learning: Similar data 

samples should have similar representations:

Question? How to determine similarity for CGs?

• Our approach: Laplacian Eigenvalues from 

adjacency matrix, as a spectral distance:
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖, 𝑗 = 𝜎𝑠 𝑖, 𝑗

𝛼∗
(𝑖)

= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜎𝑠 𝑖,∗ )

From here we can compute a Contrastive Loss: 



Experimental Setup

1. NAS-Benchmark Rank Correlation Evaluation

 Train a CL graph encoder on unlabeled target benchmark dataset.

 Then, train an MLP predictor head on labeled graphs from other benchmarks.

 Fine-tune on some labeled samples from target dataset.

2. NAS-Benchmark Search

 Pair our predictor with an evolutionary search algorithm.

 Find high-performance architectures and compare with other predictors.

3. Generalization to ImageNet Architectures

 Train a CL graph encoder on three NAS-Benchmarks.

 Fine-tune on some ImageNet architectures and perform search.



Ranking Correlation Test

 Compare to Zero-Cost Proxies (ZCP) [Abdelfattah et al., 2021]

 ZCPs calculate gradient heuristics which can correlate with 

performance.

 Also consider a simple end-to-end GNN baseline.

 Result: Our CL-based predictor finds higher rank correlation than 

ZCPs and the GNN.
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Application Search

 Pair our CL graph encoder with a simple evo search algorithm 

and find high-performance architectures on NAS-Benchmarks.

 Compare to Random Search baseline and Synflow ZCP.

 Find 94.23% acc/Rank 2 architecture on NAS-Bench-101.

 Find the best NAS-Bench-201 architecture.

 Achieves over 94.8% on NAS-Bench-301.
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Comparison With Related Neural Predictors

 Many other single search space 

neural predictors in the literature.

 We compare with our method on 

NAS-Bench-101.

 Our method matches others like 

GA-NAS and BANANAS by finding 

the 2nd best architecture.

 When #queries are taken into 

consideration, we beat BANANAS. 

Only GA-NAS [Changiz Rezaei et 

al., 2021], our previous work, uses 

fewer queries.
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Application to ImageNet

 Furthermore, our CG-based architecture 

representation is not limited to CIFAR-10.

 Perform search on Once-for-All (OFA) 

[Cai et al., 2020], MobileNetV3 (MBv3) for 

ImageNet.

 We train a CL graph encoder on samples 

from all 3 NAS-Benchmarks.

 Then fine-tune on a small number of 

OFA-MBv3 CGs.

 Compare to our previous ADS track 

paper in CIKM-21 which evaluated using 

a supernetwork (1minute per arch).

 Results: We find an OFA-MBv3 

architecture with 79.2% top-1 accuracy, 

outperforming the original OFA.

79

78.9

79.2 79.2

78.75

78.8

78.85

78.9

78.95

79

79.05

79.1

79.15

79.2

79.25

OFA-Large Mills et al. 2021,

Base

Mills et al. 2021,

Insight

CL-fine-tune

ImageNet Top-1 Acc [%]



Conclusion

We propose a general-purpose 

predictor for NAS.

 Computational Graphs.

 Contrastive Learning

 Experiments:

 SRCC

 CIFAR-10 Search

 ImageNet Search -0.5
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