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Motivation

 Neural Architecture Search:

 Three core components [Elsken et al., 2019]:

 Design Space/Search Space – Set of all possible candidate architectures, e.g., 
MobileNetV2 [Sandler et al., 2019] or V3 [Howard et al., 2019].

 Search Algorithm – Traverses the Search Space. Many forms, e.g., Evolutionary 
Algorithms, Reinforcement Learning, Gradient Descent, Bayesian Optimization, etc.

 Performance Estimation Strategy – How an architecture is evaluated, e.g., train all 
models from scratch or a weight-sharing supernet [Cai et al., 2019, Cai et al., 2020].

 Vast amount of literature on developing better Search Algorithms and more 

accurate Performance Estimation Strategies.

 Less work devoted to Design Spaces, but it is nevertheless important:

 Resource usage concerns and the need to be hardware-friendly [Cai et al., 2020]

 Inference latency is not consistent across varying hardware.

 Our objective: Profile well-known Design Spaces for accuracy/latency on 
different hardware.



What Is A Design Space?

 Components of the neural network that can be adjusted, i.e., searched.

 Most commonly, this is the network body, but not the stem or head.

 Abstract body structure into 3 levels of increasing granularity:

 Units, u, which perform operations on unique tensor sizes.

 Layers, l, a varying number within a given unit.

 Operation Blocks, b, which perform computation.

 Notation: Block b at layer l of unit u can be denoted with the tuple (u, l, b). 



What Real Design Spaces Look Like
 Once-for-All (MobileNetV3) [Cai et al., 

2020], denoted OFA

 5 units, 2-4 layers/unit

 MBConv Blocks with adjustable 
expansion/kernel size

 Variable input resolution {224, 208, 192,…}

 ProxylessNAS (MobileNetV2) [Cai et al., 
2019], denoted PN

 6 units, 2-4 layers/unit in first 5. Final unit 
contains only 1 layer.

 MBConv Blocks with adjustable 
expansion/kernel size

 ResNet50 [He et al., 2016]

 4 units.

 Units 1, 2 and 4 have 2-4 layers

 Unit 3 has 4-6 layers

 Unit-wide channel expansion ratios

 Layer expansion ratio for blocks.

 Operations consist of simple 1x1 and 3x3 
convolutions, not searchable. 



How Do We Profile a Design Space?

Assume we’re talking about one search space at a time:

 Let A denote a uniformly sampled architecture in terms of the number of 

layers in each unit, block assignment per layer.

 Now let A(u, l, b) denote that block b has been assigned to layer l of unit u; 

that u has at least l layers.

 Evaluate the performance of A(u, l, b) on a given metric M (e.g., accuracy, 

latency).

 Sample many random architectures (e.g., 100, 100k, 1M), assign (u, l, b) to 

each and measure. Compute Mb, the expected value of b on metric M on 

the entire network.

Simple, and computationally expensive in absolute terms.

Compared to exhaustive evaluation (~1019) for OFA, very cheap.



Block-Wise Performance – OFA MBv3

 Accuracy is highly correlated to block size (FLOPS).

 Device optimizations can cause unintuitive trends:

 Huawei NPU: Kernel size 7 is unfriendly; latency rises as resolution is decreased. 

 Nvidia GPU latency invariant to block size.

 AMD CPU latency depends on channel expansion ratio.



ProxylessNAS and ResNet50

 FLOPS/CPU latency: 

Depends on units 

and layers.

 GPU latency is 

mostly constant with 

noticeable 

variation. 

 Accuracy: Correlated 

to block size.

 NPU: Kernel size 7 still 

unfriendly.

 GPU: Mostly constant

 CPU: Channel 

dependent



Block-Level Performance Is Not Enough

 Recall that different units have different tensor dimensions –

height, width, and number of channels.

 The number of layers in a unit is a variable.

 These factors impact block responses differently.

 We characterize the relative performance of placing block b in 

layer l of unit u by calculating Mu,l,b :

 Can also calculate relative τ-percentiles, e.g., 5% or 95%:



Layer Dependent Performance – Sensitivity on OFA

 Variation due to block choice depends on network depth.

 Accuracy and NPU latency are most sensitive in the final units.

 GPU latency is not sensitive to block choice, but whether a unit has 

4 layers.



Layer Dependent Performance Continued

 CPU latency is sensitive to block choice in the final unit. Otherwise, it 

depends on whether the unit has 4 layers.

 Note10 latency is most sensitive in the first unit.



Application to NAS – Simple Pruning and Search

 Use insights to reduce the size of 

the search space and improve 

accuracy/latency. E.g., 

 NPU: Reduce latency by removing 

all kernel size 7. Improve accuracy 

by focusing on final 2 units.

 OFA-GPU: Reduce latency by 

constraining units 2, 4 and 5 to 

have at most 3 layers. Increase 

accuracy by removing low 

accuracy blocks.

 Benchmark original and pruned 

spaces on a simple random 

mutation algorithm.

 Start from initial pool of random 

architectures. 

 Apply random perturbations to 

architectures, generating the next 

generation.

 Evaluate, keep the best.

 Repeat a set number of times.



Pareto Frontier Search

 With pruned search spaces we can find better Pareto 
frontiers than in the originals. 

 Exploit differences in the accuracy and latency distributions.

 Good example: NPU due to kernel size 7 being unfriendly. 

 Not observed on devices where latency is highly-correlated 
to accuracy, like the Samsung Note10. 



Maximum Accuracy Search

 Remove low accuracy blocks.

 Compete with state-of-the-art.

 Our insights consistently achieve 
higher results than the original 
spaces. 

 We also outperform the original 
OFALarge in terms of ImageNet 
accuracy.



Conclusion

 Our method for profiling mobile blocks

 allows us to measure accuracy and inference latency and hardware 

friendliness on the Huawei Kirin 9000 NPU, Nvidia RTX 2080 Ti GPU, AMD 

Threadripper CPU and Samsung Note10 on the Once-for-All, ProxylessNAS and 

ResNet50 Design Spaces.

 can illustrate blockwise performance, which is different for each device.

 quantify sensitivity to block choice, layers and depth.

 provides useful information as our gathered insights allow us to prune search 

spaces, finding better Pareto frontiers and maximum accuracy results that 

compete with the state-of-the-art.
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