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Motivation

» Neural Architecture Search:

®» Three core components [Elsken et al., 2019]:

» Design Space/Search Space - Set of all possible candidate architectures, e.g.,
MobileNetV2 [Sandler et al., 2019] or V3 [Howard et al., 2019].

» Search Algorithm — Traverses the Search Space. Many forms, e.g., Evolutionary
Algorithms, Reinforcement Learning, Gradient Descent, Bayesian Optimization, etc.

» Performance Estimation Strategy — How an architecture is evaluated, e.g., train all
models from scratch or a weight-sharing supernet [Cai et al., 2019, Cai et al., 2020].

» Vast amount of literature on developing better Search Algorithms and more
accurate Performance Estimation Strategies.

» | ess work devoted to Design Spaces, but it is nevertheless important:
® Resource usage concerns and the need to be hardware-friendly [Cai et al., 2020]

» |nference latency is not consistent across varying hardware.

= Our objective: Profile well-known Design Spaces for accuracy/latency on
different hardware.
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What Is A Design Space@
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» Components of the neural network that can be adjusted, i.e., searched.

» Most commonly, this is the network body, but not the stem or head.
» Abstract body structure into 3 levels of increasing granularity:

» Units, u, which perform operations on unique tensor sizes.

= |ayers, / a varying number within a given unit.

» Operation Blocks, b which perform computation.

= Notation: Block b at layer /of unit u can be denoted with the tuple (u, 1 b).
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2019], denoted PN

» MBConv Blocks with adjustable
expansion/kernel size

» Variable input resolution {224, 208, 192,...}
» ProxylessNAS (MobileNetV2) [Cai et al.,

® 4 unifs, 2-4 layers/unit in first 5. Final unit
contains only 1 layer.

» MBConv Blocks with adjustable
expansion/kernel size

» ResNet50 [He et al., 2014]

What Real Design Spaces Look Like

» Once-for-All (MobileNetV3) [Cai et al.,
2020], denoted OFA

= 5 units, 2-4 layers/unit

4 units.

» Unifs 1, 2 and 4 have 2-4 layers

» Unif 3 has 4-6 layers

Unit-wide channel expansion ratios

Layer expansion ratio for blocks.

Operations consist of simple 1x1 and 3x3

convolutions, not searchable.

Table 1: Candidate blocks for MobileNets (OFA and ProxylessNAS; left) and ResNet50 (right). Blk. Code is a proxy name we
use for figures in Section 4.2 to simplify notations.

MobileNets Exp. Ratio Kernel Size Blk. Code | ResNet50 Unit Ratio Layer Ratio Blk. Code
MBConv3-3 3 3X3 B1 65-0.20 0.65 0.20 C65-B20
MBConv3-5 3 5X5 B2 65-0.25 0.65 0.25 C65-B25
MBConv3-7 3 7X7 B3 65-0.35 0.65 0.35 C65-B35
MBConv4-3 4 3x3 B4 80-0.20 0.8 0.20 C80-B20
MBConv4-5 4 5%5 B5 80-0.25 0.8 0.25 C80-B25
MBConv4-7 4 7X7 B6 80-0.35 0.8 0.35 C80-B35
MBConv6-3 6 3X3 B7 100-0.20 1.0 0.20 C100-B20
MBConv6-5 6 5X5 B8 100-0.25 1.0 0.25 C100-B25
MBConv6-7 6 7X7 B9 00-0.35 1.0 0.35 C100-B35
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How Do We Profile a Design Space?

Assume we're talking about one search space at a time:

®» | et 4 denote a uniformly sampled architecture in terms of the number of
layers in each unit, block assignment per layer.

= Now let 4, ,, denote that block b has been assigned to layer /of unit g
that u has at least /layers.

= Evaluate the performance of 4., ,,, on a given metric M (e.g., accuracy,
latency).

» Sample many random architectures (e.g., 100, 100k, 1M), assign (u, 1, b) 10
each and measure. Compute M, the expected value of b on metric Mon
the entire network.

U

dy
My : ZZE[M(Au,l,b)]~ (1)

U

Simple, and computationally expensive in absolute ferms.

Compared to exhaustive evaluation (~10'?) for OFA, very cheap.
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Block-Wise Performance — OFA MBv3

OFA MBConv Response
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Figure 2: Block-wise average response M, for OFA-MobileNetV3 blocks in terms of accuracy, FLOPS, and latency on 4 hardware
devices. Each entry corresponds to a MBConv block identified by an expansion ratio and a kernel size. ‘-R’ flags indicate use
of a specific input resolution, assuming 224 by default.

» Accuracy is highly correlated to block size (FLOPS).

» Device optimizations can cause unintuitive trends:

» Huawei NPU: Kernel size 7 is unfriendly; latency rises as resolutfion is decreased.
= Nvidia GPU latency invariant to block size.

» AMD CPU latency depends on channel expansion ratio.
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ProxylessNAS and ResNet50

ProxylessNAS MBConv Response
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Figure 3: Block-wise average response M, for blocks in Prox- ResNet50 Response
ylessNAS on 3 different hardware devices. Accuracy [%] FLOPS [G]
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Figure 4: Block-wise average response M; for blocks in
ResNet50 on the GPU and CPU.




Block-Level Performance Is Not Enough

» Recall that different units have different tfensor dimensions —
height, width, and number of channels.

» The number of layers in a unit is a variable.
» These factors impact block responses differently.

» We characterize the relative performance of placing block bin
layer /of unit u by calculating M,,,:

My,1p = B(M(Ay1p)) — E(M(A)), (2)
= Can also calculate relative t-percentiles, e.g., 5% or 95%:
Mr,(u,l,b) = QT(M(Au,l,b)) - QT(M(A))> (3)
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Layer Dependent Performance — Sensitivity on OFA

OFA predictor accuracy difference [%] between A, ; , and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M
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OFA Huawei NPU latency difference [ms] between A, ; » and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M
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» Variation due to block choice depends on network depth.
» Accuracy and NPU latency are most sensitive in the final units.

» GPU latency is not sensitive to block choice, but whether a unit has
4 layers.
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Layer Dependent Performance Continued

OFA AMD 2990WX latency difference [ms] between A, ; , and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M
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OFA Samsung NotelO latency difference [ms] between A, ; , and random architecture A in terms of mean and 5%/ 95% percentiles, n=1M
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» CPU latency is sensitive to block choice in the final unit. Otherwise, it
depends on whether the unit has 4 layers.

» NotelO latency is most sensitive in the first unit.
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Application to NAS — Simple Pruning and Search

» Use insights to reduce the size of
the search space and improve
accuracy/latency. E.g.,

= NPU: Reduce latency by removing
all kernel size 7. Improve accuracy
by focusing on final 2 units.

» OFA-GPU: Reduce latency by
constraining units 2, 4 and 5 to
have at most 3 layers. Increase
accuracy by removing low
accuracy blocks.

» Benchmark original and pruned
spaces on a simple random
mutation algorithm.

Start from initial pool of random
architectures.

Apply random perturbations to
architectures, generating the next
generation.

Evaluate, keep the best.

Repeat a set number of times.
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Pareto Frontier Search
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Figure 8: Pareto frontiers contrasting the original search spaces (blue) with our insight-based search spaces (red).

frontiers than in the originals.

to accuracy, like the Samsung NotelO.

With pruned search spaces we can find better Pareto

Exploit differences in the accuracy and latency distributions.
Good example: NPU due to kernel size 7 being unfriendly.

Not observed on devices where latency is highly-correlated
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Maximum Accuracy Search

Table 2: Maximum top-1 ImageNet accuracy search results
on different design spaces, compared to existing works. We

show averages over 5 random seeds for our experiments. ®» Remove low accuracy blocks.
» i -oOf- -

Model Acouracy  MACs Compete with state-of-the-art.
MobileNetV2 [21] 720 300M = Qur insights consistently achieve
MobileNetV3-Large [10] 75 o 210M higher results than the original
OFA [2] 76.0 230M spaces.
OFALarge P M = We also outperform the original
OFA-insight 79.2 £0.04 342M OFA grge IN terms of ImageNet
OFA-base 78.9 + 0.07  292M accuracy.
ProxylessNAS-insight 77.9 +0.04 417M
ProxylessNAS-base 77.6 £ 0.08  359M
ResNet50-insight 80.0 +0.03 2.81B
ResNet50-base 79.9 £0.09 2.64B
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Conclusion

» Qur method for profiling mobile blocks

» allows us to measure accuracy and inference latency and hardware
friendliness on the Huawei Kirin 2000 NPU, Nvidia RTX 2080 Ti GPU, AMD
Threadripper CPU and Samsung Note10 on the Once-for-All, ProxylessNAS and
ResNet50 Design Spaces.

» can illustrate blockwise performance, which is different for each device.
®» quantify sensifivity to block choice, layers and depth.

» provides useful information as our gathered insights allow us to prune search
spaces, finding better Pareto frontiers and maximum accuracy results that
compete with the state-of-the-art.
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