GENNAPE: Towards Generalized Neural Architecture Performance Estimators

Keith G. Mills¹, Fred X. Han², Jialin Zhang³, Fabian Chudak², Ali Safari Mamaghani¹, Mohammad Salameh², Wei Lu², Shangling Jui³ and Di Niu¹ ²Huawei Technologies Canada ³Huawei Kirin Solution, Shanghai, China

¹University of Alberta

Link to data: https://github.com/Ascend-Research/GENNAPE

Neural Architecture Search (NAS) is about optimizing and automating network design.

A key resource bottleneck in the NAS process is Performance Evaluation, e.g., how to obtain the accuracy of an image classification network.

Neural Predictors enjoy high speed and low resource costs by learning to estimate performance.

However, a key drawback of existing predictors is that they are confined to one search space, e.g., NAS-Benchmark networks, at a time.

When new networks are introduced, there is a high resource cost incurred to obtain training samples.

In this paper, we propose GENNAPE:

GENeralized Neural Architecture Performance Estimators in order to introduce search space transferability into the field of neural predictors.

Contributions of GENNAPE

- 1. Use a robust Computational Graph (CG; example shown below) format that represents network architectures from different search spaces by casting primitive operations (e.g., Conv2D) as nodes.
- 2. Introduce a semi-supervised Contrastive Learning (CL) method for pre-training a graph encoder using a spectral distance based on the structural properties of Laplacian Eigenvalues.
- 3. Use Fuzzy C-Means to perform soft clustering on graph embeddings in order to train a weighted predictor ensemble to cover different regions of the latent space.
- Introduce three new benchmark families and open-source our data in order to further transferable predictor research: HiAML: Used in Facial Landmark Detection. Inception: Used in Facial Recognition.

Two-Path: Used in Super Resolution and 4k LivePhoto.

$$\mathcal{L}_{CL} = -\sum_{i \in I} \sum_{\ell \neq i} \alpha_{\ell}^{(i)} \log \frac{1}{2}$$

We cluster the NB-101 embeddings using Fuzzy C-Means (FCM) to produce continuous cluster memberships. Clusters overlap and represent different regions of the latent space.

A single data point is represented by many clusters. We train a weighted ensemble using cluster membership.

- Like changing the operation type, filter, or channels.
- Mutation results in networks outside of original family.
- E.g., for cell-based NAS benchmark families, we can mutate an operation node in a specific cell, rather than all of them.

We can eclipse the performance of the best NB-101/201 architectures by reducing FLOPs while increasing the accuracy. With fine-tuning, this increases to over 0.94 on all public benchmarks and over 0.75 for all introduced families.

w/ FT

 0.7860 ± 0.0268 **0.8392** \pm **0.0220**

erability Test: Spe	earman's R	ank Correlatio	on Coefficient
on NB-101, then	SRCC (Tab. 5 in paper)		
on other families	Family	k-GNN	GENNAPE
B-201. scenarios:	NB-201 w/ FT	$\begin{array}{c} 0.4930 \\ 0.8606 \pm 0.0245 \end{array}$	$\begin{array}{c} 0.8146 \\ 0.9103 \pm 0.0114 \end{array}$
ero-shot transfer.	NB-301 w/ FT	$\begin{array}{c} 0.0642 \\ 0.8584 \pm 0.0290 \end{array}$	$\begin{array}{c} 0.3214 \\ 0.8825 \pm 0.0134 \end{array}$
peled CGs.	PN w/ FT	$\begin{array}{c} 0.0703 \\ 0.7559 \pm 0.0621 \end{array}$	$\begin{array}{c} 0.8213 \\ 0.9506 \pm 0.0039 \end{array}$
ero-shot transfer,	OFA-MBv3 w/ FT	$\begin{array}{c} 0.4345 \\ 0.6862 \pm 0.0253 \end{array}$	$\begin{array}{c} 0.8660 \\ 0.9449 \pm 0.0015 \end{array}$
NAPE achieves C above 0.8 for OFA-MBv3 and O1.	OFA-RN w/ FT	0.5721 0.9102 ± 0.0146	$\begin{array}{c} 0.5115 \\ \textbf{0.9114} \pm \textbf{0.0063} \end{array}$
	HiAML w/ FT	$\begin{array}{c} -0.1211 \\ \textbf{0.4300} \pm \textbf{0.0507} \end{array}$	0.4331 0.4169 ± 0.0479
	Inception w/ FT	$\begin{array}{c} -0.2045 \\ 0.3340 \pm 0.0793 \end{array}$	$\begin{array}{c} 0.4249 \\ 0.5524 \pm 0.0166 \end{array}$
ve above 0.85	Two-Path w/ FT	$\begin{array}{c} 0.1970 \\ 0.3694 \pm 0.0406 \end{array}$	$\begin{array}{c} 0.3413 \\ 0.4875 \pm 0.0311 \end{array}$
C for all public			
nmarks.			
erability lest: Normalized Discounted Cumulative Gain			
5, Oliginally	NDCG@10 (Tab. 6 in paper)		
	Family	k-GNN	GENNAPE
izes correctly	NB-201 w/ FT	$\begin{array}{c} 0.9270 \\ 0.9751 \pm 0.0082 \end{array}$	$\begin{array}{c} 0.9793 \\ 0.9855 \pm 0.0030 \end{array}$
ng architectures	NB-301 w/ FT	$\begin{array}{c} 0.5341 \\ 0.9723 \pm 0.0134 \end{array}$	$\begin{array}{c} 0.7885 \\ 0.9765 \pm 0.0081 \end{array}$
tant for when a h algorithm s to find good ectures.	PN w/ FT	$\begin{array}{c} 0.4426 \\ 0.9287 \pm 0.0271 \end{array}$	$\begin{array}{c c} 0.8736 \\ 0.9800 \pm 0.0057 \end{array}$
	OFA-MBv3 w/ FT	$\begin{array}{c} 0.8464 \\ 0.8859 \pm 0.0536 \end{array}$	
	OFA-RN w/ FT	$\begin{array}{c} \textbf{0.9470} \\ \textbf{0.9717} \pm \textbf{0.0090} \end{array}$	$\begin{array}{c} 0.6606 \\ 0.9463 \pm 0.0236 \end{array}$
o-shot setting, ethod achieves	HiAML w/ FT	$ \begin{array}{c} 0.5088 \\ 0.7356 \pm 0.0371 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Inception w/ FT	$\begin{array}{c} 0.6064 \\ 0.7310 \pm 0.0423 \end{array}$	$\begin{array}{c c} 0.8150 \\ 0.8073 \pm 0.0072 \end{array}$
	77 D 1	0 (220	0.9275