
Neural Architecture Search (NAS) is about optimizing and 

automating network design.

A key resource bottleneck in the NAS process is 

Performance Evaluation, e.g., how to obtain the accuracy 

of an image classification network.

Neural Predictors enjoy high speed and low resource 

costs by learning to estimate performance.

However, a key drawback of existing predictors is that 

they are confined to one search space, e.g., NAS-

Benchmark networks, at a time. 

When new networks are introduced, there is a high 

resource cost incurred to obtain training samples.

In this paper, we propose GENNAPE:

GENeralized Neural Architecture Performance Estimators 

in order to introduce search space transferability into the 

field of neural predictors.

GENNAPE: Towards Generalized Neural Architecture Performance Estimators

Graph Encoder Pre-Training and Ensemble Clustering

We pre-train a graph encoder using a semi-supervised 

Contrastive Learning (CL) loss like SimCLR or SupCon.

The goal of CL is to ensure similarity between the 

embeddings (latent representations) of similar data samples.

We determine similarity of two CGs i and l using a spectral 

distance based on Laplacian Eigenvalues: 𝛼𝑙
(𝑖)

.

We pre-train a graph encoder on NAS-Bench-101. The 

embeddings form small clusters. Inferred embeddings for 

other search spaces form distinct clusters:

Single Search Space Evaluation

First, test performance on 

NAS-Bench-101, in terms 

of Mean Absolute Error and 

Spearman’s Correlation.

Compare our method to 

other single-search 

predictors like TNASP and 

BANANAS, and simple 

GNNs that can use CGs.

Application to NAS

We pair a predictor with a CG-based search algorithm.

• Algorithm operates on node-based mutations.

• Like changing the operation type, filter, or channels.

• Mutation results in networks outside of original family.

• E.g., for cell-based NAS benchmark families, we can mutate 

an operation node in a specific cell, rather than all of them.

We can eclipse the performance of the best NB-101/201 

architectures by reducing FLOPs while increasing the accuracy.

Train on NB-101, then 

infer on other families 

like NB-201. 

Two scenarios:

1. Zero-shot transfer.

2. Fine-tuning on 50 

labeled CGs.

For zero-shot transfer, 

GENNAPE achieves 

SRCC above 0.8 for 

PN, OFA-MBv3 and 

NB-201. 

With fine-tuning, 

achieve above 0.85 

SRCC for all public 

benchmarks.
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Contributions of GENNAPE

1. Use a robust Computational Graph (CG; example shown below) 

format that represents network architectures from different search 

spaces by casting primitive operations (e.g., Conv2D) as nodes.

2. Introduce a semi-supervised Contrastive Learning (CL) method 

for pre-training a graph encoder using a spectral distance based 

on the structural properties of Laplacian Eigenvalues.

3. Use Fuzzy C-Means to perform soft clustering on graph 

embeddings in order to train a weighted predictor ensemble to 

cover different regions of the latent space.

4. Introduce three new benchmark families and open-source our 

data in order to further transferable predictor research:

HiAML: Used in Facial Landmark Detection.

Inception: Used in Facial Recognition.

Two-Path: Used in Super Resolution and 4k LivePhoto.

We cluster the NB-101 embeddings using Fuzzy C-Means 

(FCM) to produce continuous cluster memberships. Clusters 

overlap and represent different regions of the latent space.

A single data point is represented by many clusters. We train 

a weighted ensemble using cluster membership.

Result: The contributions of our method gradually reduce MAE 

until it is only 0.59% and improve SRCC until it is above 0.9 and it 

exceeds or is on-par with several single-space predictors.

SRCC (Tab. 5 in paper)

NDCG@10 (Tab. 6 in paper)NDCG, originally 

from Information 

Retrieval (IR), 

prioritizes correctly 

ranking architectures 

with high accuracy.

Important for when a 

search algorithm 

needs to find good 

architectures.

In zero-shot setting, 

our method achieves 

over 0.65 in all 

cases.
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Link to data: https://github.com/Ascend-Research/GENNAPE
Transferability Test: Spearman’s Rank Correlation Coefficient

Transferability Test: Normalized Discounted Cumulative Gain

With fine-tuning, this increases to over 0.94 on all public 

benchmarks and over 0.75 for all introduced families.

https://github.com/Ascend-Research/GENNAPE
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