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Neural Architecture Search (NAS) is about optimizing and ' | o) Frosecton inverse FLOPs Transform Train on NB-101, then SRCC (Tab. 5 in paper)
automating network design. | | C @ Q » MLP  MLP MLP ~1IA] 1 LA infer on other families “paiy™ | <GNN | GENNAPE
: Graph Graph like NB-201.
_ _ | . _ Lo I N A : NB-201 0.4930 0.8146
A key resource bottleneck in the NAS process is | N =mbedding - W Y Y s N s N1 d (0.:,0.1) Two scenarios: w/ FT 0.8606 = 0.0245 | 0.9103 + 0.0114
Performance Evaluation, e.g., how to obtain the accuracy . : :@—>@ — r@ U s 1. Zero-shot transfer. NB-301 0.0642 0.3214
. o . . 2/ Projection | LS - - w/ FT 0.8584 + 0.0290 | 0.8825 + 0.0134
of an image classification network. . . _ Regression] | Accuracy 2. ::'Qel'tlén(':”g on 50 =~ oo e
| ' ' Loss Prediction abele S w/ FT 0.7559 + 0.0621 | 0.9506 + 0.0039
Neural Predictors enjoy high speed and low resource 11 N FLOPs Transform Cluster Memberships as Ensemble Weights “ OFAMBV3 04345 0.8660
costs by learning to estimate performance. ' N(0.9,0.1) ’ N, 1) For zero-shot transfer, w/FT 0.6862 == 0.0253 | 0.9449 -+ 0.0015
- GENNAPE achieves ~ OFARN 0.5721 0.5115
However, a key drawback of existing predictors IS that Graph Encoder Pre-Training and Ensemble Clustering Single Search Space Evaluation SRCC above 0.8 for w/FT 0.9102 + 0.0146 | 0.9114 + 0.0063
they are confined to one search space, e.g., NAS- We pre-train a graph encoder using a semi-supervised First, test performance on PN, OFA-MBv3 and  HiAML -0.1211 0.4331
B Y Amark K - P J Contrastive Learning (CL) loss like SimCLR or SupCon. NAS-Bench-101, in terms Method | MW | BRCE NB-201. W/ FT 0.4300 + 0.0507 | 0.4169 + 0.0479
enchmark networks, at a time. of Mean Absolute Error and ~ NPN! 1.09 + 0.01% | 0.934 + 0.003 Inception -0.2045 0.4249
_ o : : BANANAST | 1.40 +0.06% | 0.834 + 0.002 o _ w/ FT 0.3340 4+ 0.0793 | 0.5524 + 0.0166
When new networks are introduced, there is a high The goal of CL is to ensure similarity between the Spearman’s Correlation. TNASP! | 123£0.02% | 09180002  With fine-tuning, Two-Path 0.1970 03413
resource cost incurred to obtain training samples embeddings (latent representations) of similar data samples. GCN 178 + 0.06% | 0.732 + 0.034 achieve above 0.85 w/ FT 0.3694 + 0.0406 | 0.4875 + 0.0311
' Compare our method to GIN 1.72 £ 0.04% | 0.735 £ 0.035 SRCC for all public
In this paper, we propose GENNAPE: We determine similarity of two CGs i and | using a spectral othe_r single_-search éﬁ_ﬁp }2} 18'?35//3 8'2;3 i 8'8(%8 benchmas. - - - -
GENeralized Neural Architecture Performance Estimators distance based on Laplacian Eigenvalues: al(l)_ predictors like TNASP and CL+ECM 1192 012% | 0.896 % 0.003 Transferablll Test: Normalized Discounted Cuulatlve Gain
_ _ e BANANAS, and simple CL+MLP+T | 0.65 + 0.08% | 0.921 + 0.003 NDCG, originally NDCG@10 (Tab. 6 in paper
In order to introduce search space transferability into the - : Pap
P y B (i) exp(sim(z;, 2¢)) GNNs that can use CGs. CL+FCM+T | 0.59 £0.01% | 0.930 + 0.002 from Information F— . GNN GENNAPE
field of neural predictors. Lor =~ ; ; o log >z exp(sim(zi, 2,)) Lo Retrieval (IR), szégl | 0'9270 | 0.9793
Contributions of GENNAPE Result: The contributions of our method gradually reduce MAE prioritizes correctly  w/FT 0.9751 4 0.0082 | 0.9855 -+ 0.0030
1. Use a robust Computational Graph (CG; example shown below) We pre-train a graph encoder on NAS-Bench-101. The until itis only 0.59% and improve SRCC until itis above 0.9 and it ranking architectures ~NB-301 0.5341 0.7885
format that represents network architectures from different search ~ €mbeddings form small clusters. Inferred embeddings for exceeds or is on-par with several single-space predictors. with high accuracy. ~ w/FT 0.9723 + 0.0134 | 0.9765 + 0.0081
: . : other search spaces form distinct clusters: PN 0.4426 0.8736
spaces by casing priniive opeatons (2. Conv20) as nodes s, Fa
_ _ _ _ CL Embeddinags, All Families Application to NAS w/ FT 0.9287 £+ 0.0271 | 0.9800 + 0.0057
2. Introduce a semi-supervised Contrastive Learning (CL) method J = Important for when a
for pre-training a graph encoder using a spectral distance based NG-101 Model Dataset FLOPs | Top-1 Acc.(%) g w/ FT 0.8859 + 0.0536 | 0.9838 + 0.0030
on the structural properties of Laplacian Eigenvalues. NB-301 NB-101-Best CIFAR-10 11.72G 94.97 needs to find good OFA_RN 0.9470 0.6606
3. Use Fuzzy C-Means to perform soft clustering on graph OFAL B3 NB-101-Search CIFAR-10 9.49G 95.05 architectures. w/ FT 0.9717 + 0.0090 | 0.9463 = 0.0236
embeddings in order to train a weighted predictor ensemble to Ay 01 - HiAML 0.5088 0.6892
different reaqi f the latent cegffon NB-201-Best CIFAR-10 313M 9327 In zero-shot setting, ~ w/FT 0.7356 + 0.0371 | 0.7804 = 0.0211
Cover aifferent regions of the latent space. Two-Path NB-201-Search CIFAR-10 283M 93.62 our method achievés I . o 08150
ili - P nception . .
4 Introqluce three new benchmark famlhes_and Open-source our X OFA-ResNet-Input ImageNet120 | 12.13G 80.62 ; w/ FT 0.7310 + 0.0423 | 0.8073 & 0.0072
. P & over 0.65 in all
da:le_l A{RA Erdljer tg furlt:her. tlreit_nsfzrabli p[))redlct.or research: OFA-ResNet-Search | ImageNet120 | 9.46G 81.08 caces P 06339 08275
| : Used in Facial Landmark Detection. ' w/ FT 0.7860 + 0.0268 | 0.8392 + 0.0220
Inception: Used in Facial Recognition. . We pair a predictor with a CG-based search algorithm. With fine-tuning, this increases to over 0.94 on all public
Two-Path: Used in Super Resolution and 4k LivePhoto. Algorithm operates on node-based mutations. benchmarks and over 0.75 for all introduced families.
9 _ _ _ Like changing the operation type, filter, or channels. - Y OF
I " ™ @ - — - We cluster the NB-101 embeddings using Fuzzy C-Means Mutation results in networks outside of original family. 335’ "(%
5| = EINEIRE NN % L2 (FCI\l/I) to produce contln_]lcjrous Cluster me:cntr)]erlshlps- Clusters E.g., for cell-based NAS benchmark families, we can mutate \ ” / ﬁ z (o
= L . S < 12 1S 1% (] |3 overlap and represent different regions of the latent space. an operation node in a specific cell, rather than all of them. \ l 3* AAAA ;
@
HEEeE | " | A= A
A single data point is represented by many clusters. We train We can eclipse the performance of the best NB-101/201 HUAWEI| HISILICON

a weighted ensemble using cluster membership. architectures by reducing FLOPs while increasing the accuracy.
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