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Computational Graphs as Segments

Abstract
Real-world DNN optimization is a challenge for ML engineers.  

Heavy use of expert-driven, predefined design spaces.

We present a framework for evolving neural networks:     
AutoGO: Automatic Graph Optimization. 

Our contributions: 
● Database of computational segments for mutation.
● Novel Predecessor-Segment-suCcessor (PSC) predictor 

accurately estimates mutation performance change. 
● Mixed Integer Linear Programming (MILP) for functionality.
● Further refine best architectures in existing benchmarks.
● Optimize architectures for CV tasks, like ResNets/VGG for 

Segmentation/Pose Estimation, EDSR/FSRCNN for SR.
● Demonstrate real-world deployment applicability by 

improving already-lightweight architectures for mobile 
phone deployment using cycle-accurate counter. 

Fig. 1 in paper: DNN partitioned into disjoint subgraphs, called 
segments. Each segment contains a variable number of nodes, 
edges, inputs, etc., and are the AutoGO unit of mutation. 

We mine segments in a data-driven manner using topological 
sort and Byte-Pair Encoding (BPE); tokenization from NLP.

Predecessor, Segment and suCcessor
Assign CG segments into 3 groups, P, S, C, for mutation:
1. Predecessor P - Architecture input to S. 
2. Segment S - Specific architecture piece we mutate.
3. suCcessor C - Everything after S to the output.

Mutation: Replacing S with S*, drawn from Segment DB:

PSC Predictor: Novel neural predictor which is sensitive to 
performance change as a result of segment mutation.

Tab. 1 in paper: Rank correlation (SRCC) on 5 families.

Results on Computer Vision Tasks 

We apply AutoGO to optimize classical networks that are 
not part of NAS-Benchmarks for Computer Vision Tasks 
like Classification (ImageNet), Semantic Segmentation 
(Cityscapes), and Human Pose Estimation (MPII).

Tab. 3: AutoGO improves ResNet-50/101 & VGG-16.

Tab. 4: AutoGO improves EDSR Super Resolution PSNR.

Real-world Mobile Deployment

Example Mutations

AutoGO further optimizes an already-lightweight, 
proprietary U-Net-like architecture for denoising on a 
mobile phone using a cycle-accurate counter. 

Tab. 6: Reducing power/latency of a denoising network.

Right - Fig. 4 in paper:
AutoGO replacing a 
ResNet-50 residual 
block with a complex 
segment from HiAML.
MILP adjusts 
channels/resolution 
to ensure architecture 
functionality. 

Below - Paper Fig. 9:
Trio of key mutations 
AutoGO performs on 
EDSR for Super 
Resolution (SR). 

Fig. 2 in paper: AutoGO takes the CG of an architecture and Segment DB as inputs, producing  a Pareto frontier as output.


