

Abstract

Real-world DNN optimization is a challenge for ML engineers.

Heavy use of expert-driven, predefined design spaces.

We present a framework for evolving neural networks: AutoGO: <u>Automatic Graph Optimization</u>.

Our contributions:

- Database of computational *segments* for mutation.
- Novel <u>P</u>redecessor-<u>S</u>egment-su<u>C</u>cessor (PSC) predictor accurately estimates mutation performance change.
- Mixed Integer Linear Programming (MILP) for functionality.
- Further refine best architectures in existing benchmarks.
- Optimize architectures for CV tasks, like ResNets/VGG for Segmentation/Pose Estimation, EDSR/FSRCNN for SR.
- Demonstrate real-world deployment applicability by improving already-lightweight architectures for mobile phone deployment using cycle-accurate counter.

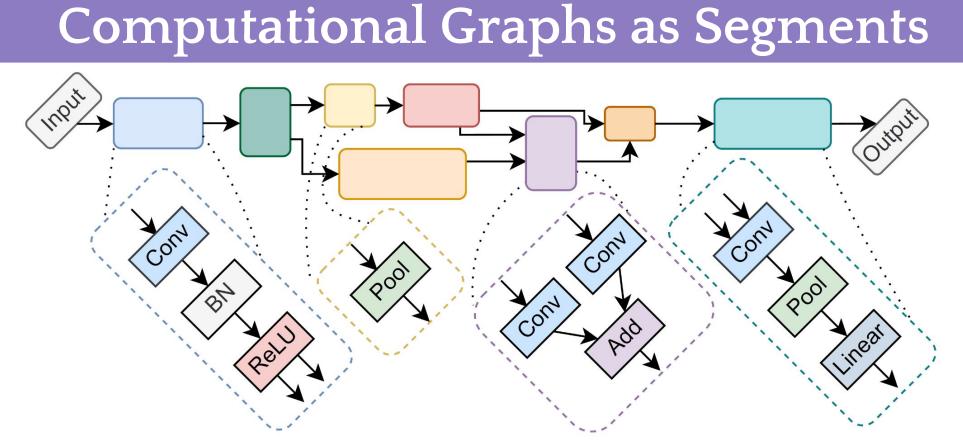
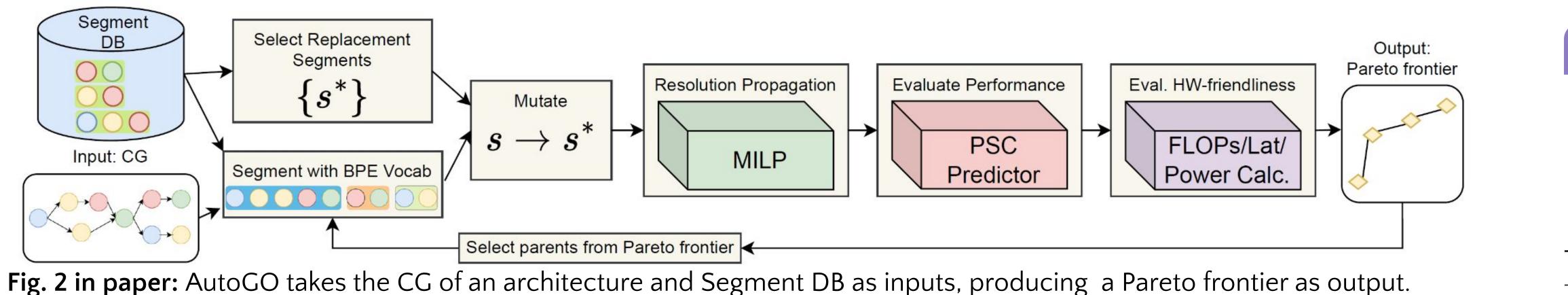


Fig. 1 in paper: DNN partitioned into disjoint subgraphs, called segments. Each segment contains a variable number of nodes, edges, inputs, etc., and are the AutoGO unit of mutation.

We mine segments in a data-driven manner using topological sort and Byte-Pair Encoding (BPE); tokenization from NLP.

AutoGO: Automated Computation Graph Optimization for Neural Network Evolution

Mohammad Salameh¹, Keith G. Mills^{1,2}, Negar Hassanpour¹, Fred X. Han¹, Shuting Zhang³, Wei Lu¹, Shangling Jui³, Chunhua Zhou³, Fengyu Sun³ and Di Niu² ¹Huawei Technologies Canada, ²Dept. ECE, University of Alberta, ³Huawei Kirin Solution, Shanghai, China

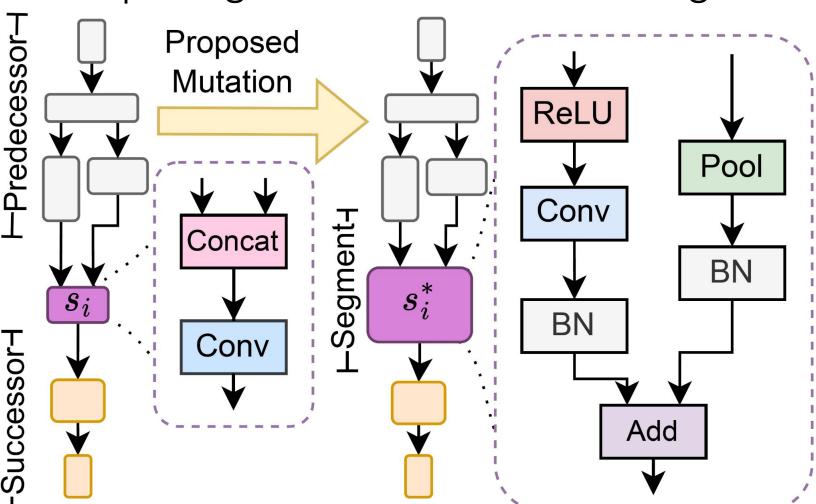


Predecessor, Segment and suCcessor

Assign CG segments into 3 groups, *P*, *S*, *C*, for mutation:

- Predecessor **P** Architecture input to **S**.
- 2. Segment *S* Specific architecture piece we mutate.
- 3. suCcessor *C* Everything after *S* to the output.

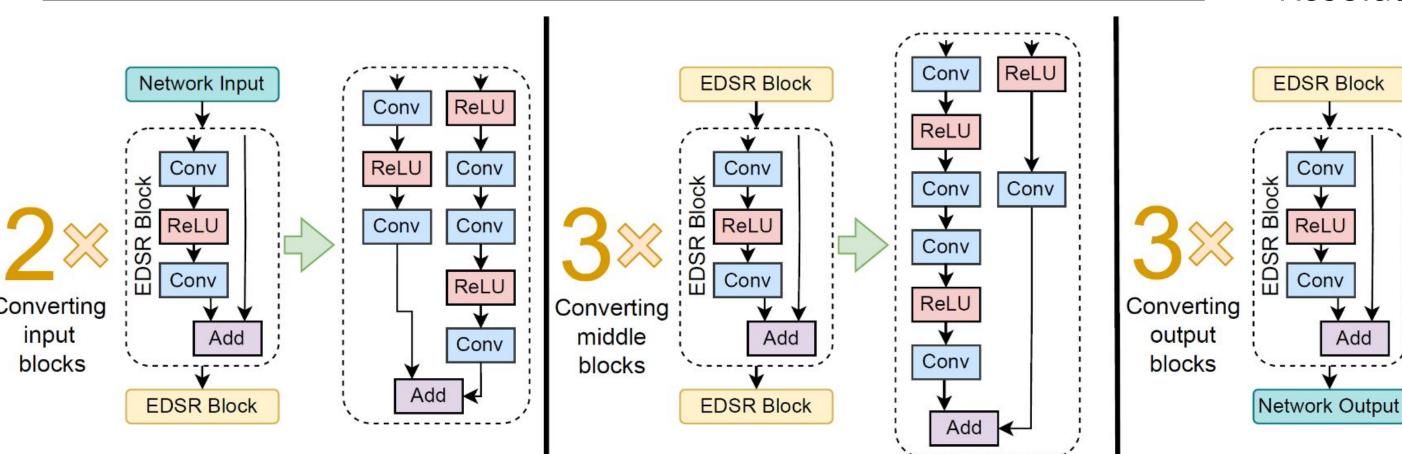
Mutation: Replacing *S* with *S**, drawn from Segment DB:



PSC Predictor: Novel neural predictor which is sensitive to performance change as a result of segment mutation.

Tab. 1 in paper: Rank correlation (SRCC) on 5 families.

Arch. Family	GNN	PSC 1:1 Ratio	PSC
NB-101	0.627 ± 0.031	0.666 ± 0.025	0.849 ± 0.054
NB-201	0.809 ± 0.016	0.865 ± 0.015	$\textbf{0.983} \pm 0.003$
HiAML	0.010 ± 0.013	0.170 ± 0.042	$\textbf{0.734} \pm 0.031$
Inception	0.209 ± 0.037	0.066 ± 0.071	$\textbf{0.496} \pm 0.022$
Two-Path	0.023 ± 0.018	0.236 ± 0.043	$\textbf{0.724} \pm 0.022$



Results on Computer Vision Tasks

We apply AutoGO to optimize classical networks that are not part of NAS-Benchmarks for Computer Vision Tasks like Classification (ImageNet), Semantic Segmentation (Cityscapes), and Human Pose Estimation (MPII).

Tab. 3: AutoGO improves ResNet-50/101 & VGG-16.

Architecture	ImageNet Top-1/5	Cityscapes mIoU	MPII PCK	FLOPs [1e9]	Lat. [ms]
ResNet-50 Original	74.02%/91.22%	63.42%	82.36%	6.29	7.18
ResNet-50 AutoGO Arch 1	75.34%/92.16%	65.88%	84.07 %	6.71	7.50
ResNet-50 AutoGO Arch 2	75.66 %/ 92.45 %	66.65 %	82.70%	5.88	6.92
ResNet-101 Original	75.09%/91.94%	65.92%	82.77%	13.76	15.86
ResNet-101 AutoGO Arch 1	76.56 %/ 93.09 %	67.12%	83.59%	13.66	15.56
ResNet-101 AutoGO Arch 2	75.69%/92.15%	66.38%	84.64 %	13.35	15.36
VGG-16 Original	74.18%/91.83%	65.36%	85.92%	30.81	4.65
VGG-16 AutoGO	74.91 %/ 93.23 %	66.91%	85.99 %	24.34	4.20

Tab. 4: AutoGO improves EDSR Super Resolution PSNR.

SR Architecture	DIV2K	Set5	Set14	BSD100	Urban100	Manga109	FLOPs [1e9]	Lat. [ms]
EDSR Original	36.19	36.86	32.57	31.39	29.14	36.09	141	18.04
EDSR AutoGO Arch 1	37.28	38.01	33.62	32.18	31.56	38.49	118	15.38
EDSR AutoGO Arch 2	37.27	37.97	33.55	32.16	31.53	38.47	110	14.52
EDSR AutoGO Arch 3	37.25	38.01	33.58	32.16	31.46	38.44	105	13.81

Base Auto

Real-world Mobile Deployment

AutoGO further optimizes an already-lightweight, proprietary U-Net-like architecture for denoising on a mobile phone using a cycle-accurate counter.

Tab. 6: Reducing power/latency of a denoising network.

noising	PSNR	Δ Latency	Power [mW]	$\Delta \mathbf{Power}$	FLOPs [1e9]
e Model	139.4	_	724.59	_	17.05
toGO	139.9	-24.94%	657.82	-9.21%	16.26

Example Mutations

Right – Fig. 4 in paper: Š. T AutoGO replacing a DALL ResNet-50 residual block with a complex Conv segment from HiAML. MILP adjusts channels/resolution to ensure architecture functionality. ReLU Segmer : Mutation Below – Paper Fig. 9: Trio of key mutations Conv AutoGO performs on BN EDSR for Super Resolution (SR). ReLU Conv ReLU Conv Add Add Add