
GENNAPE: Towards Generalized Neural Architecture
Performance Estimators

Keith G. Mills1,2*, Fred X. Han2, Jialin Zhang3, Fabian Chudak2,
Ali Safari Mamaghani1, Mohammad Salameh2, Wei Lu2, Shangling Jui3, Di Niu1

1Department of Electrical and Computer Engineering, University of Alberta
2Huawei Technologies, Edmonton, Alberta, Canada

3Huawei Kirin Solution, Shanghai, China
{kgmills, safarima, dniu}@ualberta.ca

{fred.xuefei.han1, fabian.chudak, mohammad.salameh, jui.shangling}@huawei.com
{zhangjialin10, robin.luwei}@hisilicon.com

Abstract

Predicting neural architecture performance is a challenging
task and is crucial to neural architecture design and search.
Existing approaches either rely on neural performance pre-
dictors which are limited to modeling architectures in a pre-
defined design space involving specific sets of operators and
connection rules, and cannot generalize to unseen architec-
tures, or resort to Zero-Cost Proxies which are not always ac-
curate. In this paper, we propose GENNAPE, a Generalized
Neural Architecture Performance Estimator, which is pre-
trained on open neural architecture benchmarks, and aims to
generalize to completely unseen architectures through com-
bined innovations in network representation, contrastive pre-
training, and a fuzzy clustering-based predictor ensemble.
Specifically, GENNAPE represents a given neural network as
a Computation Graph (CG) of atomic operations which can
model an arbitrary architecture. It first learns a graph encoder
via Contrastive Learning to encourage network separation by
topological features, and then trains multiple predictor heads,
which are soft-aggregated according to the fuzzy member-
ship of a neural network. Experiments show that GENNAPE
pretrained on NAS-Bench-101 can achieve superior transfer-
ability to 5 different public neural network benchmarks, in-
cluding NAS-Bench-201, NAS-Bench-301, MobileNet and
ResNet families under no or minimum fine-tuning. We further
introduce 3 challenging newly labelled neural network bench-
marks: HiAML, Inception and Two-Path, which can concen-
trate in narrow accuracy ranges. Extensive experiments show
that GENNAPE can correctly discern high-performance ar-
chitectures in these families. Finally, when paired with a
search algorithm, GENNAPE can find architectures that im-
prove accuracy while reducing FLOPs on three families.

Introduction
Understanding and predicting the performance of neural net-
works is crucial to automated neural architecture design and
neural architecture search (NAS). In fact, the amount of time
and computational resources required by a NAS scheme is
critically dependent on how evaluation is performed. Early

*Work done during an internship at Huawei.
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methods (Zoph and Le 2017) rely on training individual ar-
chitectures from scratch via intensive GPU usage. Weight-
sharing methodologies like DARTS (Liu, Simonyan, and
Yang 2019) propose supernet models that superimpose the
features of all architectures in a search space, substantially
reducing the cost of search. DARTS further reduces this
cost by searching for an architecture on a small image
classification dataset like CIFAR-10 (Krizhevsky, Hinton
et al. 2009) before transferring the found architecture to a
larger benchmark dataset, like ImageNet (Russakovsky et al.
2015). In contrast, Once-for-All (OFA) (Cai et al. 2020) em-
ploys strategies to effectively pre-train a re-usable supernet
on ImageNet prior to performing search. Newer methods
have seen the introduction of Zero-Cost Proxies (Abdelfat-
tah et al. 2021) which estimate performance from forward
pass gradients.

Advancements in neural predictors (Tang et al. 2020; Wen
et al. 2020) allow for faster inference time, which signif-
icantly lowers the architecture evaluation cost incurred in
NAS. However, one major trade-off associated with using
neural predictors is a lack of generalizability. The input to
a neural predictor is usually a vector encoding of the archi-
tecture, whose scope is confined to the designated search
space the predictor is meant to operate in. For example, to
facilitate architecture search, Once-for-All, SemiNAS (Luo
et al. 2020) and BANANAS (White, Neiswanger, and Sa-
vani 2021) design specialized predictors, each performing in
an individually defined search space. Such a restriction se-
riously limits the scope that a search algorithm (Mills et al.
2021a,c) can explore, regardless of how effective it is.

Furthermore, as a separate new predictor must be trained
for each new search space created, there is an implied
additional heavy cost associated with the laborious and
resource-intensive task of labelling the performance of a
suitable amount of neural architecture samples in this search
space, since these architecture samples must be trained from
scratch for evaluation. Ideally, a generalized neural predic-
tor would not be subject to these constraints. Not only would
it be able to receive input from multiple search spaces, but
it would learn an architecture representation that is robust
enough to accurately estimate and rank the performance of
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Family Synflow Jacov Fisher Snip FLOPs
NB-201 0.823 0.859 0.687 0.718 0.001
NB-301 -0.210 -0.190 -0.305 -0.336 0.578
PN 0.086 -0.022 0.677 0.731 0.689
OFA-MBv3 0.648 0.035 0.602 0.649 0.614
OFA-RN 0.724 -0.094 0.651 0.752 0.785
HiAML 0.154 -0.010 -0.102 -0.168 0.277
Inception 0.085 0.177 -0.152 -0.061 0.412
Two-Path 0.227 -0.071 0.042 -0.027 0.333

Table 1: Spearman Rank Correlation coefficients for four
Zero-Cost Proxy methods and a simple FLOPs-based pre-
dictor on all target families. Best results in bold.

networks from unseen search spaces.
In this paper we propose a Generalized Neural

Architecture Performance Estimator (GENNAPE), to per-
form a feasibility check on pretraining a robust and gener-
alizable neural predictor based only on open neural network
benchmarks and transferring it to a wide range of unseen
architecture families for accurate accuracy ranking. GEN-
NAPE accepts input architectures from any search space
through a generic Computation Graph representation, and
performs a two-stage process of graph encoding and cluster-
based prediction to achieve transferability to a new neural
network design space under no or minimum fine-tuning. In
designing GENNAPE, we make the following contributions:

First, we propose a generic embedding scheme based on
Computation Graph (CG) representations of any neural net-
works and a self-supervised Contrastive Learning (CL) loss
as the starting point of our predictor. Specifically, we rep-
resent an input neural network as a graph of atomic neu-
ral operations, e.g., convolutions, pooling, activation func-
tions, rather than macro units like MBConv blocks (Howard
et al. 2019) that are specific to architecture families. This
allows us to feed any neural network into our predictor. We
then pass the CG through an encoder to obtain a fixed-length
embedding. The graph encoder is trained by a carefully de-
signed CL loss based on Laplacian Eigenvalues and dropout
data augmentation, to distinguish graphical features between
architecture families.

Second, we propose to learn multiple prediction heads,
each being an MLP and focusing on learning the character-
istics of a local cluster of architectures in the training fam-
ily. We use Fuzzy C-Means (FCM) clustering to partition
the training family (in our case, NAS-Bench-101 due to its
abundance of labelled samples) into soft clusters, where a
given input architecture can find soft memberships among
the clusters. Based on the FCM partitions, we construct a
Multi-Layer Perceptron-Ensemble (MLP-E) that makes pre-
diction for an architecture by soft aggregating the MLP
heads according to the architecture’s membership.

We verify the performance of GENNAPE on a wide range
of public NAS families. Specifically, we pretrain our predic-
tor on NAS-Bench-101, and treat the search spaces of NAS-
Bench-201, NAS-Bench-301, ProxylessNAS (Cai, Zhu, and
Han 2019), OFA-MobileNetV3, OFA-ResNet as unseen tar-
get families. We show that our predictor is able to achieve

over 0.85 SRCC and over 0.9 NDCG on all of these target
families with minimal fine-tuning. When integrated into a
downstream NAS search algorithm, GENNAPE further im-
proves high-accuracy architectures from NAS-Bench-101,
NAS-Bench-201 and OFA-ResNet on ImageNet120.

To stress test the generalizability of GENNAPE, we fur-
ther introduce three new challenging architecture bench-
mark sets: HiAML, Inception and Two-Path. These families
contain certain properties, such as narrow accuracy range
and ties, which make it difficult for a predictor to accurately
learn architecture rankings, and thus serve as challenging
benchmarks for future NAS research. We show that GEN-
NAPE can obtain over 0.78 NDCG on all three families. Fi-
nally, we open-source1 these new benchmarks to facilitate
further research on generalizable neural predictors.

Related Work
Neural predictors rely on benchmark datasets, namely NAS-
Bench-101 (Ying et al. 2019), 201 (Dong and Yang 2020)
and 301 (Zela et al. 2022), which allow for performance
querying. The downside to these methods is that every ar-
chitecture must be trained from scratch, possibly multi-
ple times. Arguably, supernet-based methods like OFA (Cai
et al. 2020) fall under a unique category of benchmark,
where sampled architectures can be immediately evaluated.
However, this is still less resource intensive than training
the network from scratch. Therefore, while benchmarks pro-
vide a rich repository of architecture statistics, an upfront re-
source cost is incurred, motivating the need for generalized
predictors that can perform well on unseen families.

One method of low-resource neural prediction are Zero-
Cost Proxies (ZCP); Abdelfattah et al. (2021) outline many
variants. ZCP schemes involve gradient calculations as well
as parameter salience. As Table 1 shows, while ZCP meth-
ods may achieve good results on some architecture families,
their performance is inconsistent across families. In addi-
tion, ZCP methods require network instantiation to perform
forward passes to compute corresponding measures, while
neural predictors do not.

Contrastive Learning (CL) is based on distinguishing
pairs of similar and dissimilar objects. This approach
has been recently used successfully in image classifica-
tion (Chen et al. 2020). Specifically, CL classifiers improve
transferability on unseen data. Furthermore, fine-tuning on
a very small fraction of the labeled data from a new dataset
is enough to produce state of the art classifiers. Khosla et al.
(2020) further extend this approach to the case when image
labels are known during training. We focus on applying CL
methods for finding vector representations of graphs.

Some deep learning schemes use Fuzzy C-Means clus-
tering (FCM) to design interpretable models. Yeganejou,
Dick, and Miller (2020) substitute the last MLP for an FCM
clustering layer and classify images according to the high-
est membership value. By contrast, GENNAPE incorporates
FCM into an MLP ensemble, using the membership values
to perform a weighted sum of MLP heads.

1https://github.com/Ascend-Research/GENNAPE
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Family Dataset #CGs Acc. Range [%]

NB-101 CIFAR-10 50k [10.00, 94.09]
NB-201 CIFAR-10 4.1k† [46.25, 93.37]
NB-301 CIFAR-10 10k [88.28, 94.67]
PN ImageNet 8.2k [71.15, 77.81]
OFA-MBv3 ImageNet 7.5k [73.56, 78.83]
OFA-RN ImageNet 10k [75.25, 79.94]

HiAML CIFAR-10 4.6k [91.11, 93.44]
Inception CIFAR-10 580 [89.08, 94.03]
Two-Path CIFAR-10 6.9k [85.53, 92.34]

†We only use the 4096 architectures that do not contain the
‘none’ operation.

Table 2: Architecture families in terms of dataset, number of
CGs and accuracy range. Horizontal line demarcates exist-
ing benchmark families.

Figure 1: The architecture backbone of HiAML, containing
4 stages. Each stage contains 2 identical blocks.

Architecture Families
We describe the neural network families used in this paper.
Table 2 provides an overall summary of each family.

Public NAS Benchmark Families
NAS-Bench-101 (NB-101) is one of the first and largest
benchmarks for NAS. It consists of 423k unique architec-
tures, individually evaluated on CIFAR-10. The architec-
tures are cell-based, where each cell is a Directed Acyclic
Graph (DAG) containing operations, stacked repeatedly to
form a network. We sample 50k random architectures from
this family to form our CG training family.

NAS-Bench-201 (NB-201) and NAS-Bench-301 (NB-
301) are two additional benchmarks. Like NB-101, architec-
tures consist of a fixed topology of cells, except they follow
the DARTS search space. Additionally, NB-201 only con-
tains 15.6k evaluated architectures, while NB-301 is a sur-
rogate predictor for the DARTS search space. Therefore, we
treat both as test families.

ProxylessNAS (PN) (Cai, Zhu, and Han 2019) and Once-
for-All-MobileNetV3 (OFA-MBv3) (Cai et al. 2020) are
based on the MobileNet (Howard et al. 2019) architecture
families, with PN and OFA-MBv3 implementing versions
2 and 3, respectively. Once-for-All-ResNet (OFA-RN) is
based on the classical ResNet-50 (He et al. 2016) topol-
ogy. All three evaluate on ImageNet. Architectures consist
of searchable, macro features where the number of blocks
is variable. We refer the reader to Mills et al. (2021b) for
further details regarding PN, OFA-MBv3 and OFA-RN.
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Figure 2: Accuracy [%] and FLOPs [10e6] histograms for
the new benchmarks. Accuracy binning interval is 0.01%.

Introduced NAS Benchmark Families
We introduce the key attributes of the new network fami-
lies and provide additional information in the supplemen-
tary. For all families, we define an operator as a bundle of
primitive operations, e.g., Conv3x3-BN-ReLU. A block is a
set of operators with different connection topologies, while
a stage contains a repetition of the same block type and the
backbone determines how we connect blocks to form dis-
tinct networks. For these network families, accuracy values
are rounded to four decimal places. That is, we would rep-
resent 91.23% as a terminating 0.9123. Figure 2 provides
accuracy and FLOPs histograms.

HiAML is a custom family of networks inspired by NAS-
Bench-101. Networks are built using 14 pre-defined oper-
ation block structures found by GA-NAS (Changiz Rezaei
et al. 2021). Specifically, a pair of identical blocks form
a stage, and there are 4 stages per network. Since August
2021, HiAML networks have been in use as the backbone
feature extractor in Huawei’s mobile Facial Landmark De-
tection application, i.e., the family is not limited to Image
Classification. HiAML networks are efficient enough to run
entirely on the less powerful Ascend Tiny Core, which is a
part of Da Vinci Architecture 2.0 in Huawei’s Neural Pro-
cessing Unit (NPU). Figure 1 provides a backbone illustra-
tion of HiAML. As shown in Table 2, we observe that Hi-
AML has the narrowest performance profile among all fam-
ilies considered, as 4.6k architectures fit into an accuracy
range of only 2.33%. As a comparison, OFA-MBv3 has the
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Figure 3: An overview of GENNAPE. We utilize Computation Graphs and a Contrastive Learning Graph Encoder to generate
embeddings, which are fed into a Fuzzy C-Means clustering algorithm. Cluster memberships act as weights in an MLP ensem-
ble. Finally, we use FLOPs to apply a linear transform to the accuracy.

second smallest accuracy range of 4.25%. This character-
istic makes accurate prediction on HiAML networks very
difficult as there are many ties as Figure 2(a) shows.

Inception takes inspiration from the Inception-
v4 (Szegedy et al. 2016) classification networks in
literature. Our custom Inception networks consist of a
single-path backbone with 3 stacked stages, and inside each
stage, there is a repetition of 2 to 4 blocks. Like the original
Inception, each block may contain up to 4 branching paths.
The main advantage of Inception is that channels are divided
among the paths, leading to lower computation costs. The
backbone follows a single-path topology with 3 stages.
Currently, Inception networks serve as feature extractors for
Huawei’s Facial Recognition framework.

Two-Path networks are designed to be more lightweight
than other families. Like the other benchmarks, Huawei uti-
lizes Two-Path networks for real-world applications, specif-
ically multi-frame Super Resolution and 4k LivePhoto ap-
plications. As the name suggests, the backbone consists of
two branching paths. On each path, there are 2 to 4 blocks,
each a sequence of up to 3 operators. One may view the
Two-path family as the complement of the Inception fam-
ily. An Inception network has a single-path backbone with
branching paths inside blocks. But a Two-Path network has
two branching paths of blocks, while each block is a single
path of operators.

Methodology
Figure 3 visualizes our scheme. A predictor that general-
izes to arbitrary architecture families should accept a gener-
alizable neural network representation as input. We consider
the Computation Graph (CG) of a network structure based
on the graph structures deep learning libraries like Tensor-
Flow (Abadi et al. 2016) and PyTorch (Paszke et al. 2019)
use to facilitate backpropagation. Specifically, nodes refer to
atomic operators in a network, e.g., Convolution, Linear lay-
ers, Pooling layers, non-linearities and tensor operations like
mean, add and concat. Edges are directed and featureless.

This approach allows us to encode architectures from
different families using a common format that represents
all primitive network operations and the connections be-
tween them. For example, both NB-101 and NB-201 in-
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Figure 4: Example of a Compute Graph. Two parallel
branches performing convolution and pooling operations
process the input. A linear layer and activation then produce
the output.

clude ‘Conv3x3’ and ‘Conv1x1’ as candidate operations.
These candidates are actually sequences of three primitive
operations: Convolution, ReLU and Batch Normalization
(BN), which are arranged differently for each search space.
Wheras NB-101 consider a ‘Conv-BN-ReLU’ ordering, NB-
201 use ‘ReLU-Conv-BN’. Moreover, NB-101 encodes op-
erations as nodes, while NB-201 follow DARTS and encode
operations on edges. Our CG format reconciles these differ-
ences by representing each primitive as its own node with
edges defined by the actual forward-pass of the network.

Figure 4 illustrates a simple CG, where each node is a
primitive operation. Node features consist of a one-hot cate-
gory for operation type as well as the height-width-channel
(HWC) size of the input and output tensors. If an operation
contains trainable weights, e.g., convolution and linear lay-
ers, we include a feature for the weight tensor dimensions,
and a boolean for whether bias is enabled.

As graphs can contain an arbitrary number of nodes and
edges, it is necessary to process them into a common, fixed-
length format prior to prediction. Therefore, in this section,
we introduce our Contrastive Loss-based (CL) graph em-
beddings scheme, the Fuzzy C-Means (FCM) ensemble that
forms the GENNAPE predictor and describe a FLOPs-based
accuracy transform.

Embeddings from Contrastive Learning
We use Contrastive Learning (CL) to learn vector repre-
sentations of CGs by adapting the two key components of
SimCLR (Chen et al. 2020). The first is data augmentation,
where perturbations produce two different copies of every
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Figure 5: t-SNE scatterplot of the Contrastive Learning em-
beddings for all architecture families. Best viewed in color.

image in a batch. The second is the CL loss function, which
aims to identify positive and negative pairs within a batch.
Unlike images, random perturbations of CGs are unlikely to
belong to the same architecture family. Therefore, to gen-
erate embedding variation, we adopt dropout augmentation
from Gao, Yao, and Chen (2021).

Consider a batch of N CGs. We use dropout and apply a
graph encoder twice to make 2 copies of each CG. We then
use an MLP head to project these embeddings of length e
into a lower dimensional space p to optimize the CL loss. Let
I = {h1, h2, . . . , h2N} ⊂ Re be the vector representations,
and let zi = proj(hi) ∈ {||z|| = 1 : z ∈ Rp} be their
projections. We define the cosine similarity sim(zi, zj) =
zi · zj/τ , with temperature τ > 0 and · as the dot product.
Then, our CL loss function is

LCL = −
∑
i∈I

∑
ℓ̸=i

α
(i)
ℓ log

exp(sim(zi, zℓ))∑
r ̸=i exp(sim(zi, zr))

, (1)

where α
(i)
ℓ ≥ 0 and

∑
ℓ̸=i α

(i)
ℓ = 1. For each computa-

tional graph i, we calculate the convex combination α
(i)
∗ us-

ing the spectral distance of the underlying undirected graph
as a similarity measure. We use topological properties to
group architectures in the same family or separate architec-
tures from different families, because the arrangement of op-
erations differs for each family. Therefore, given a computa-
tion graph, let G be its underlying undirected graph. The
normalized Laplacian of G encodes important connectiv-
ity features. Furthermore, it allows us to define a (pseudo)
distance between computation graphs by evaluating the Eu-
clidean distance between the corresponding q = 21 smallest
eigenvalues (Dwivedi and Bresson 2021). We use σ(g1, g2)
to denote the distance between computation graphs g1, g2
and define α

(i)
∗ to be the softmax of σ(i, ∗).

We train a CL encoder on NB-101 and use it to infer em-
beddings for all test families. A 2-dimensional representa-
tion of the embeddings is shown in Figure 5. We note two
advantages of the CL encoder. First, it effectively separates
each test family into distinct clusters with minimal overlap.
By contrast, the CL encoder divides the training family, NB-

101, into many smaller clusters. This is an important finding.
While NB-101 contains many architectures, it only contains
3 candidate operations, meaning that most of the diversity
amongst these architectures comes from topological differ-
ences, i.e., Laplacian eigenvalues, which play an important
role in training our CL encoder. As such, each NB-101 clus-
ter may reside closer to a given test family than others. Next,
we exploit these observations to build a predictor ensemble.

Soft-Clustering Ensemble
We use MLP Ensembles (MLP-E) in GENNAPE to make
predictions. Each head in the MLP-E is is responsible for a
region of the embedding space, although these regions can
partially overlap with each other. That is because we use
Fuzzy C-Means (FCM) (Bezdek, Ehrlich, and Full 1984)
clustering to divide up the embedding space, and FCM rep-
resents data using continuous memberships with respect to
all clusters. The output of the MLP-E is defined as,

y′i =

C∑
j=1

Ui,jf
j(hi),

where hi and y′i are the graph embedding and target predic-
tion a CG, of which there are N in total, C is the number
of heads, f j is a head and Ui,j is the membership for CG i
across cluster j. FCM membership values U ∈ (0, 1)N×C

are positive numbers that sum to 1 for a given sample;
∀i

∑C
j=1 Ui,j = 1.

Like other distance-based clustering algorithms, FCM
consists of centroids that are computed alongside member-
ship values by minimizing an optimization. Let di,j be the
Euclidean distance between CG embedding hi and FCM
centroid vj . FCM converges by alternating between updat-
ing membership values and centroid locations, respectively,
according to the following equations,

Ui,k = (
C∑

j=1

(
d2i,k
d2i,j

)

1

m− 1 )−1, (2)

vk =

∑N
i=1 U

m
i,khi∑N

i=1 U
m
i,k

, (3)

where m > 1 is known as the fuzzification coefficient, and
is typically a value of 2 or greater (Pedrycz and Song 2012),
which controls the degree of overlap between the clusters.

The FCM algorithm alternates between Equations 2 and
3 until either a pre-specified number of iterations has been
reached, or the following stopping criteria is satisfied:

max
i,j

|Ui,j(t+ 1)− Ui,j(t)| ≤ ϵ, (4)

where t is a time parameterization of U . Essentially, clus-
tering convergence is reached once the maximum change in
membership across all N data samples and C clusters is less
than ϵ = 1e−9.

When applying FCM to GENNAPE, we compute cluster
centroids on the training family. For test families, we infer
membership from existing centroids using Equation 2.
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A simple MLP is not guaranteed to generalize to features
of families it has not seen. However, we can aid generaliz-
ability by only having the MLP learn a specific region in
the feature space and weighing its predictions based on the
distance between the unseen features and the learnt region.
Moreover, we can divide up the feature space with an MLP-
E. Each head learns to specialize on a subset of the embed-
ding features for the training family, as well an association
with nearby, unseen features, depending on memberships.

FLOPs-based Features and Transforms
Every network has an associated FLOPs value, or floating
point operations required for the forward pass. GENNAPE
uses FLOPs to transform the regression targets. While the
downstream goal of any regressor is to estimate the accuracy
of a neural network, GENNAPE estimates the following,

yi = Z(
Ai

Log10(Fi + 1) + 1
), (5)

where yi is the label, Ai is the accuracy of a network, Fi is
the FLOPs, measured in gigaFLOPs and Z is the Z-Score.
The inverse of this transformation can be applied to a pre-
diction to obtain the corresponding accuracy prediction. We
use the standardization statistics from the NB-101 training
set for all test families, and we prune out NB-101 archi-
tectures whose accuracy is below 80% when implementing
Equation 5. This leaves us with 49k architectures.

Experimental Results
In this Section, we describe our experimental procedure and
results in terms of regression and correlation metrics. Fi-
nally, we apply GENNAPE to NAS and perform search.

NAS-Bench-101 Comparison
We use NB-101 as the training family and treat all others
as unseen test families. We split the NB-101 architectures
into a training set with 80% of the data, and two separate
validations sets that contain 10% each. We apply Equation 5
using the mean and standard deviation from the training par-
tition to standardize the validation sets. The model trains for
40 epochs. We evaluate it on the first validation set at every
epoch without applying the inverse of Equation 5 to track
loss statistics on transformed labels. Once training is com-
plete, we further evaluate the model on the second validation
set, this time applying the inverse of Equation 5 on predic-
tions to calculate performance compared to the ground truth
accuracy. For each scheme, we train a model 5 times using
different random seeds. The overall best model is the one
that achieves the highest rank correlation on the second NB-
101 validation set. We provide hyperparameters and other
training details in the supplementary materials.

We consider several types of regressor variants in our
experiments. ‘CL+FCM+T’ uses CL graph embeddings as
well as the FCM MLP-E to predict performance labels trans-
formed using Equation 5. ‘CL+T’ removes the FCM clus-
tering ensemble and uses a single MLP while ‘CL+FCM’
keeps the clustering ensemble while removing Equation 5.
Finally, ‘CL’ drops both Equation 5 and the FCM ensemble

Method MAE SRCC

NPN† 1.09 ± 0.01% 0.934 ± 0.003
BANANAS† 1.40 ± 0.06% 0.834 ± 0.002
TNASP† 1.23 ± 0.02% 0.918 ± 0.002

GCN 1.78 ± 0.06% 0.732 ± 0.034
GIN 1.72 ± 0.04% 0.735 ± 0.035
k-GNN 1.61 ± 0.08% 0.814 ± 0.020
CL 1.51 ± 0.17% 0.874 ± 0.009
CL+FCM 1.19 ± 0.12% 0.896 ± 0.003
CL+T 0.65 ± 0.08% 0.921 ± 0.003
CL+FCM+T 0.59 ± 0.01% 0.930 ± 0.002

†Obtained by running their model using our 50k NB-
101 architectures, using the same data splits.

Table 3: NB-101 performance in terms of MAE [%] and
SRCC. We compare our CL-based schemes to various
regressor-based neural predictors. Horizontal line separates
non-transferable and transferable predictors. Results aver-
aged over 5 random seeds.

to predict accuracy directly using the CL embeddings. As
baselines, we consider several GNN regressors such as k-
GNN (Morris et al. 2019), Graph Convolutional Networks
(GCN) (Welling and Kipf 2016) and Graph Isomorphism
Networks (GIN) (Xu et al. 2019) and train them end-to-end
on CGs. Finally, we also consider several related neural pre-
dictors, such as Neural Predictor for NAS (NPN) (Wen et al.
2020), BANANAS (White, Neiswanger, and Savani 2021)
and TNASP (Lu et al. 2021). These predictors operate on
the NB-101 family, however since they do not represent ar-
chitectures using CGs, they are not transferable.

We consider two predictor performance metrics. The first
is Mean Absolute Error (MAE), which measures predic-
tor accuracy with respect to ground-truth labels. We report
MAE as a percentage where lower is better. The second is
Spearman’s Rank Correlation (SRCC) which judges a pre-
dictor’s ability to rank a population of architectures. SRCC
ranges from -1 to 1 and in our case higher is better as that
represents positive agreement with the ground-truth.

Table 3 enumerates our results for NB-101. We note the
effectiveness of Equation 5, which allows us to achieve
MAE scores below 1% on average. Moreover, the inclu-
sion of CL and FCM further improve this result to a mini-
mum of 0.59%. In terms of ranking correlation, CL+FCM+T
achieves the second highest SRCC at 0.930. While NPN ob-
tains a slightly higher SRCC, that is the limit of its capabil-
ities, since NPN on NB-101 cannot perform predictions for
architectures from other families. Finally, in terms of other
GNN CG baselines, the k-GNN excels. While it does not
obtain the best MAE or SRCC, it is distinctly better than
both the GCN and GIN. Therefore, we continue to use it as
a generalizable predictor baseline.

Transferability Prediction Error
When evaluating on test families, we consider two cases.
The first is zero-shot transfer performance, where we mea-
sure a given metric on all architecture CGs in a family with-
out fine-tuning the predictor. In the second case, we sam-
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Family k-GNN CL CL+T CL+FCM+T
NB-101 1.61 1.51 0.65 0.59
NB-201 1.80 2.81 1.93 2.05
NB-301 0.46 0.85 0.43 0.57

PN 0.56 0.40 0.35 0.33
OFA-MBv3 0.61 0.35 0.31 0.27
OFA-RN 0.40 0.44 0.45 0.37
HiAML 0.35 0.45 0.40 0.39
Inception 0.60 0.82 0.71 0.86
Two-Path 0.80 1.11 0.71 0.72

Table 4: Mean Absolute Error [%] results across all families
and regressors. Lower is better. Best result in bold. Results
averaged across 5 random seeds.

ple 50 architectures at random, fine-tune for 100 epochs and
then evaluate on the remaining, held-out architectures. We
perform fine-tuning 5 separate times on different seeds, en-
suring that we select the same 50 architectures per seed.
Evaluating MAE performance on test families is applicable
in the fine-tuning setting as that provides the predictor some
information on the actual distribution of target labels. When
fine-tuning using Equation 5, we use the mean and standard
deviation information from the NB-101 training partition to
standardize labels for the 50 fine-tuning samples, and to re-
cover accuracy on the remaining samples at inference.

Table 4 provides test family MAE results for the k-GNN
baseline and several CL-based regressors. Once again, we
observe how regressors that use Equation 5 achieve the low-
est MAE on 6 of 9 families, including all ImageNet families
and Two-Path. The k-GNN achieves good performance on
NB-201, likely because it has the second largest range after
NB-101. On HiAML, Inception and Two-Path, the results
are generally very close, showing how difficult it can be to
predict accuracy for them.

Unseen Architecture Ranking Performance
GENNAPE consists of a weighted average of predictions
from several models. The first two are the aformentioned
‘CL+FCM+T’ and ‘CL+T’ regressors. We also include two
pairwise classifiers, that, instead of estimating accuracy, pre-
dict which CG in a pair has higher accuracy. We label these
as ‘CL+Pairwise+FCM’ and ‘CL+Pairwise’, differentiated
by whether they have FCM and an MLP ensemble. We also
include the k-GNN and the FLOPs predictor from Table 1.
For zero-shot performance, GENNAPE weighs the output
of all predictors equally. When fine-tuning, we calculate
weights by taking the softmax of the Kendall’s Tau (KT)
result each individual predictor obtains on the fine-tuning
samples. The supplementary materials contains details and
an ablation study of these components.

Table 5 provides SRCC results across all test families. We
observe how GENNAPE achieves SRCC values above 0.85
on all public benchmarks. In fact, the only public family
GENNAPE does not achive zero-shot SRCC above 0.5 on is
NB-301, however, at 0.3214 this is still much higher than the
k-GNN and any of the ZCPs from Table 1. Moreover, fine-

Family k-GNN GENNAPE
NB-201 0.4930 0.8146
w/ FT 0.8606 ± 0.0245 0.9103 ± 0.0114
NB-301 0.0642 0.3214
w/ FT 0.8584 ± 0.0290 0.8825 ± 0.0134
PN 0.0703 0.8213
w/ FT 0.7559 ± 0.0621 0.9506 ± 0.0039
OFA-MBv3 0.4345 0.8660
w/ FT 0.6862 ± 0.0253 0.9449 ± 0.0015
OFA-RN 0.5721 0.5115
w/ FT 0.9102 ± 0.0146 0.9114 ± 0.0063

HiAML -0.1211 0.4331
w/ FT 0.4300 ± 0.0507 0.4169 ± 0.0479

Inception -0.2045 0.4249
w/ FT 0.3340 ± 0.0793 0.5524 ± 0.0166
Two-Path 0.1970 0.3413
w/ FT 0.3694 ± 0.0406 0.4875 ± 0.0311

Table 5: Spearman Rank Correlation results across test fam-
ilies in the zero-shot transfer and fine-tuning (w/ FT) con-
texts. Higher is better. Best results in bold. Fine-tuning re-
sults averaged across 5 random seeds.

tuning greatly improves the performance of GENNAPE on
NB-301. Meanwhile, the k-GNN does achieve higher zero-
shot SRCC on OFA-RN, but the improvement is less than
0.1 SRCC. On all other public benchmarks it fails to achieve
over 0.5 SRCC in the zero-shot setting.

GENNAPE achieves the best zero-shot performance on
HiAML, Inception and Two-Path. With fine-tuning, it man-
ages to achieve above 0.5 SRCC on Inception and close
to 0.5 SRCC on Two-Path. By contrast the k-GNN fails
to achieve positive correlation on HiAML and Inception in
the zero-shot setting, and while it achieves better HiAML
SRCC with fine-tuning, once again the performance gap is
very small, below 0.015 SRCC and less than the GENNAPE
zero-shot SRCC of 0.4331. Finally, GENNAPE does lose
some ranking performance when fine-tuning on HiAML, but
that is a feature of the family: a narrow accuracy range with
many ties that is hard to predict on. We provide additional
results using Kendall’s Tau in the supplementary materials.

SRCC measures correlation over all N samples and as-
signs equal weight to each. However, the concerns of NAS
relate to finding high-performance architectures. Therefore,
for further evaluation of GENNAPE, we consider another
metric that assigns disproportionate importance. Follow-
ing AceNAS (Zhang et al. 2021), we adopt Normalized
Discounted Cumulative Gain (NDCG), an Information Re-
trieval (IR) metric where queried objects are assigned a rel-
evance score. In IR, it is more important to properly order
objects with higher relevance. This goal is analogous to the
concerns of NAS. Accuracy is relevance.

We list our findings in Table 6. GENNAPE clearly out-
performs the k-GNN baseline in both contexts. The sole ex-
ception is OFA-R50, likely due to NB-101 architectures be-
ing partially based on ResNets in terms of operation choice.

9196



Family k-GNN GENNAPE
NB-201 0.9270 0.9793
w/ FT 0.9751 ± 0.0082 0.9855 ± 0.0030
NB-301 0.5341 0.7885
w/ FT 0.9723 ± 0.0134 0.9765 ± 0.0081
PN 0.4426 0.8736
w/ FT 0.9287 ± 0.0271 0.9800 ± 0.0057
OFA-MBv3 0.8464 0.9234
w/ FT 0.8859 ± 0.0536 0.9838 ± 0.0030
OFA-RN 0.9470 0.6606
w/ FT 0.9717 ± 0.0090 0.9463 ± 0.0236

HiAML 0.5088 0.6892
w/ FT 0.7356 ± 0.0371 0.7804 ± 0.0211
Inception 0.6064 0.8150
w/ FT 0.7310 ± 0.0423 0.8073 ± 0.0072
Two-Path 0.6339 0.8275
w/ FT 0.7860 ± 0.0268 0.8392 ± 0.0220

Table 6: Normalized Discounted Cumulative Gain
(NDCG@10) across test families in the zero-shot transfer
and fine-tuning (w/ FT) context. Values are reported in
the range [0, 1] and higher is better. Best results in bold.
Fine-tuning results averaged across 5 random seeds.

Still, in the zero-shot transfer context GENNAPE achieves
over 0.65 NDCG on all families, and over 0.9 NDCG on all
public families with fine-tuning.

Moreover, GENNAPE overtakes the k-GNN on HiAML.
Results are also more favorable on Inception and Two-Path,
where GENNAPE achieves over 0.8 NDCG in both the zero-
shot and fine-tuning settings. This aligns with our earlier
intuition: Although the small accuracy range makes global
ranking difficult, there are only a few architectures at the tail
of the distribution and GENNAPE is better at determining
which ones they are.

In sum, we show that GENNAPE is a robust neural pre-
dictor that can easily generalize to unseen architecture fam-
ilies. The NDCG results we show are of particular rele-
vance to the problem of NAS, where neural predictors fill the
role of performance evaluation. This is because, ultimately,
the downstream performance of any search algorithm relies
upon having a performance estimator capable of identifying
high-performance architectures. Next, we apply GENNAPE
to the problem of NAS, to demonstrate its applied capability
and the flexibility of our CG architecture representation.

Applying GENNAPE to NAS
We conduct NAS experiments where we directly modify the
CGs of existing optimal classification networks. We aim to
reduce FLOPs while improving or maintaining accuracy us-
ing a simple location search algorithm and provide details in
the supplementary materials. Then, we train and evaluate the
original optimal architecture and the one found by search.

We apply this routine to the best CIFAR-10 architectures
in NB-101 and NB-201. We also search on the best OFA-
RN architecture found by Mills et al. (2021b) using the first

Model Dataset FLOPs Top-1 Acc.(%)

NB-101-Best CIFAR-10 11.72G 94.97
NB-101-Search CIFAR-10 9.49G 95.05
NB-201-Best CIFAR-10 313M 93.27
NB-201-Search CIFAR-10 283M 93.62
OFA-RN-Input ImageNet120 12.13G 80.62
OFA-RN-Search ImageNet120 9.46G 81.08

Table 7: Evaluation results for architectures found using
CL+FCM+T predictors and our CG-based search algorithm.

120 classes of ImageNet to reduce carbon footprint. We use
the fine-tuning CL+FCM+T predictors in these experiments.
Search takes less than 3 hours. Inference on our predictors
is fast. The primary bottleneck stems from the search algo-
rithm determining whether newly found CGs are feasible as
classification neural networks.

Table 7 summarizes the results, demonstrating the power
of GENNAPE to improve upon existing, high-performance
architectures, in terms of accuracy and FLOPs, on three pub-
lic families. Notably, the OFA-ResNet architecture found by
search achieves 22% FLOPs reduction while improving ac-
curacy by 0.4%. Moreover, these results demonstrate the
utility of our CG framework, as the atomic operation mu-
tations result in architectures that are not exact fits to the
original search spaces. Using CGs, we can modify sections
like the stem or head that are typically fixed, and introduce
new operation sequences. For example, the NB-201 archi-
tecture we compare to and outperform was already the best
on CIFAR-10. Therefore, a typical neural predictor for NB-
201 would not be able to adequately process and predict per-
formance for architectures found by our search algorithm.

Conclusion

In this paper, we introduce GENNAPE, or Generalized Neu-
ral Architecture Performance Estimators, to address issues
present in neural predictor design. Namely, that neural pre-
dictors typically operate within a fixed search space, and
are not generalizable to unseen architecture families. GEN-
NAPE receives Computation Graphs representing arbitrary
network architectures as input, before using a Contrastive
Learning encoder to generate embeddings. The embeddings
pass through an MLP Ensemble, and we compute the pre-
diction using a weighted summation according to Fuzzy C-
Means clustering memberships. We extensively test GEN-
NAPE against a number of known neural predictors on NB-
101 and show that it yields high MAE and SRCC perfor-
mance. Experimental results demonstrate the generalizabil-
ity of our scheme in zero-shot and fine-tuning contexts in
terms of SRCC and NDCG@10. When applied to search,
GENNAPE can improve upon existing, high-performance
NB-101, NB-201 and OFA-ResNet architectures. Finally,
we introduce three new challenge families: HiAML, Incep-
tion and Two-Path, as open-source benchmarks.
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