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ABSTRACT Recent developments in Neural Architecture Search (NAS) resort to training the supernet
of a predefined search space with weight sharing to speed up architecture evaluation. These include
random search schemes, as well as various schemes based on optimization or reinforcement learning,
in particular policy gradient, that aim to optimize a parametric architecture distribution and the shared
model weights simultaneously. In this paper, we focus on efficiently exploring the important region of a
neural architecture search space with reinforcement learning. We propose Deep Deterministic Architecture
Sampling (DDAS) based on deep deterministic policy gradient and the actor-critic framework, to selectively
sample important architectures in the supernet for training. Through balancing exploitation and exploration,
DDAS is designed to combat the disadvantages of prior random supernet warm-up schemes and optimization
schemes. Gradient-based NAS approaches require the execution of multiple short experiments in order to
combat the random stochastic nature of gradient descent, while still only producing a single architecture.
Contrary to this approach, DDAS employs a reinforcement learning-based agent and focuses on discovering
a Pareto frontier containing many architectures over the course of a single experiment requiring 1 GPU day.
Experimental results for CIFAR-10 and CIFAR-100 on the DARTS search space show that DDAS can depict
in a single search, the accuracy-FLOPs (or model size) Pareto frontier, which outperforms random sampling
and search. With a test accuracy of 97.27%, the best architecture found on CIFAR-10 outperforms the original
second-order DARTS while using 600M fewer parameters. Additionally, DDAS finds an architecture capable
of achieving 82.00% test accuracy on CIFAR-100 while using only 3.14M parameters and outperforming
GDAS.

INDEX TERMS Neural architecture search, reinforcement learning, differentiable optimization.

I. INTRODUCTION
Manual neural architecture design demands laborious efforts

computationally expensive and requires the use of a large
number of GPUs.

accompanied by time-consuming experimentation for model
evaluation. Neural Architecture Search (NAS) mitigates the
hurdles of hand-crafted designs by using algorithms to search
for the best architecture, given a particular task. Despite
showing remarkable improvements in image classification
and language modeling tasks, NAS algorithms that rely on
Evolutionary Algorithms [1] or Reinforcement learning (RL)
[2] suffer from the evaluation bottleneck. The evaluation
process of architectures generated by such algorithms is
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Recent developments have given rise to one-shot architec-
ture search [3], [4], in which a one-shot model or supernet
as a superposition of all candidate architectures is trained by
sharing weights among all architectures. One-shot architec-
ture search has reduced the search cost down to one or a
few GPU days, as the evaluation of individual architectures
is now converted to an alternative process of training a single
supernet and validating individual architectures based on the
shared weights inherited from the supernet.

Various methods have been proposed to optimize a para-
metric architecture distribution while updating the shared
weights. DARTS [5] parameterizes the search space through

VOLUME 9, 2021


https://orcid.org/0000-0001-6054-1798
https://orcid.org/0000-0001-9266-4637
https://orcid.org/0000-0002-5250-7327
https://orcid.org/0000-0001-9379-2147
https://orcid.org/0000-0002-8106-1571
https://orcid.org/0000-0003-1258-1845
https://orcid.org/0000-0002-5046-4001
https://orcid.org/0000-0003-2326-8344
https://orcid.org/0000-0002-1047-4264
https://orcid.org/0000-0003-0885-1283

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

IEEE Access

a set of differentiable operation weights o« and relies on
gradient-based optimization algorithms to simultaneously
optimize the operation weights and the shared model weights,
in a process known as bi-level optimization. Gradient-based
optimization algorithms have further been used for architec-
ture sampling based on Gumbel Softmax (e.g., SNAS [6]) and
architecture distribution binarization (e.g., ProxylessNAS
[71). On the other hand, ENAS [8] uses an RNN-based policy
to sample discrete architectures for training, and adjusts the
policy toward increased validation accuracy using the policy
gradient method in reinforcement learning.

However, there have been concerns that the policies of pop-
ular NAS algorithms and the architectures they produce are
not decisively better than those of Random Search [9], [10],
which samples architectures uniformly at random. Moreover,
it has been found that most cell-based NAS algorithms tend
to produce wide and shallow architectures [11]. The class of
cells mentioned above are not superior to deep and narrow
architectures. Rather, by allowing for easier gradient flow,
feature smooth gradient landscapes, they train faster during
the search phase and are thus preferred by existing algorithms
at the cost of a thorough exploration. Therefore, an important
trade-off any weight sharing NAS schemes face is between
exploitation—the ability to locate and fully train the best
architecture, and exploration—the ability to explore large
swathes of a search space to allow the better architectures to
be discovered.

The problem is further complicated by the need for
hardware-friendly architecture search, e.g., by budgeting the
number of FLOPS,! inference time, or the total number of
parameters that a model can have. Schemes such as SNAS [6],
RC-DARTS [12] and ProxylessNAS [7] address the problem
by introducing constraints or penalty into their optimization
formulations. In practical deployment, however, the need
for depicting a Pareto frontier of architectures necessitates
repeated executions of these algorithms under different con-
straints, which is costly.

In this paper, we use Reinforcement Learning to efficiently
explore an architecture search space and propose Deep Deter-
ministic Architecture Sampling (DDAS), a weight sharing
NAS algorithm based on Deep Deterministic Policy Gradient
(DDPG) [13], a continuous, off-policy reinforcement learn-
ing algorithm [13], in order to efficiently generate a Pareto
frontier of architectures in terms of the accuracy and FLOPS
(or number of parameters) and find the best architecture, all
in a single run. Specifically, we make the following contribu-
tions.

First, we model NAS as a continuous control problem
in a high-dimensional search space. Similar to DARTS [5],
SNAS [6] and ProxylessNAS [7], we parameterize the search
space using a set of continuous weights of operations that
connect latent vectors. However, instead of updating these
weights of operations with gradient descent or bi-level opti-
mization, we rely on the ability of DDPG to explore and

1Floating point operations used to forward pass a single data sample.

VOLUME 9, 2021

sample them in an actor-critic framework. Empirical evidence
shows that DDPG performs well in high-dimensional control
tasks with continuous actions (e.g., robotic control) [14].

Second, previous reinforcement learning schemes pro-
posed for NAS, e.g., ENAS, mainly use an RNN controller,
which is essentially a stochastic policy, to sample archi-
tectures for training and evaluation. However, due to the
stochastic nature of the policy, the same policy may sample a
large number of different architectures, entailing Monte Carlo
gradient estimates which have large variances. In contrast,
we use a deterministic policy in DDAS, since the determin-
istic policy gradient can be estimated much more efficiently
than the usual stochastic policy gradient, as is shown in DPG
[15] and DDPG [13].

Third, we judiciously design the reward and strike a bal-
ance between exploitation and exploration when updating
the actor and critic networks in DDAS, such that the agent
will maintain a high reward while being allowed to explore
a potentially large space of candidate architectures, which
gradient-based optimization methods fail to fully explore.
In fact, in the pursuit of a higher validation performance,
gradient-based optimization schemes may often converge to
a single large architecture, which is repeatedly selected for
training, preventing these schemes from sampling other archi-
tectures in the search space and generating the Pareto frontier.
In DDAS, the ability of exploration over diverse architec-
tures in the search space is achieved by the use of a com-
bination of noise-based exploration schemes in a continuous
space.

A series of experimental results on CIFAR-10 and CIFAR-
100 [16] suggest that the Pareto frontiers generated by DDAS
show a clear superiority over that of Random Search over a
randomly warm-started supernet [9]. In the meantime, the test
accuracy of the best architectures found by DDAS is compa-
rable to a range of related NAS algorithms that rely on weight
sharing.

Il. RELATED WORK
Originally, NAS is a resource-intensive task, since every
candidate architecture must be fully trained to retrieve its
performance, which is then used to guide the search. For
instance, NASNet [17] and AmoebaNet [18] spend over 2000
GPU days to find the best architecture. To reduce this cost,
succeeding works like ENAS [8] and DARTS [5] adopt a
weight-sharing scheme by training a supernet containing
all possible operations/connections. Each architecture then
inherits the corresponding weights from the supernet.
Current NAS techniques mainly branch into two cate-
gories, ones that rely on random search, and ones that attempt
to incrementally learn a distribution of the best architectures.
Under the first category, [3] train an one-shot model once
and then sample architectures from a fixed distribution for
performance estimation and search. [4] sample a single path
uniformly from a supernet to train the shared weights. Sim-
ilarly, [9] randomly sample a child network and only update
its corresponding shared weights. [10], [19] recently provide
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more insights on the ability of shared weights in the supernet
to represent the true weights of individual architectures.

In comparison, gradient-based methods like DARTS [5]
construct a continuous relaxation of the search space and
learn the degree of contribution of each operation. DARTS
has given rise to many off-shoots, including P-DARTS [20],
an exploitation-driven scheme which aims to bridge the
gap between search and evaluation. It does so by gradually
decreasing the size of the search space while increasing the
size of the search model. However, training the supernets used
by both algorithms requires a large amount of GPU memory.
To this end, SNAS [6] and GDAS [21] instead learn a sam-
pling distribution for each modifiable operation in the search
space of DARTS. ProxylessNAS [7] learns the probabilities
to binarize the operations per edge using BinaryConnect [22].

Our proposed algorithm is related to both DARTS
and sampling-based methods including SNAS, GDAS and
ProxylessNAS, searching for architectures parameterized
by differentiable architecture weights. However, instead of
solving bi-level optimization (as in DARTS) or using Gumbel
Softmax (e.g., as in SNAS, GDAS) or BinaryConnect (as in
ProxylessNAS) to handle the continuous-to-discrete conver-
sion, we use DDPG [13] to generate architecture weights.
Our experimental results show that DDPG achieves better
exploration than optimization-based methods.

Closely related to our work are NAS algorithms based
on Reinforcement Learning, e.g., ENAS [8], NASNet [17],
MNASNet [23], which use either REINFORCE [24] or
Proximal Policy Optimization [25] to learn to sample child
networks in a stochastic manner. These algorithms operate in
an episodic manner [26]. A single architecture is constructed
per episode over multiple time steps and can only be eval-
uated upon completion. A key departure of our work from
the existing RL-based NAS is the use of a deterministic
policy instead of stochastic policies, which results in less
variance in the updates of architecture distributions via policy
gradient. DDAS generates and evaluates one architecture
per step, resulting in a continuing problem with an infinite
horizon. Another difference is that we focus on using the
exploration mechanisms of DDPG to enhance the search of
Pareto frontiers instead of a single best architecture.

Hardware constraints, such as FLOPS, model size and
inference time, are considered by a number of NAS
schemes [23], [27], [28]. Using an Evolutionary-based algo-
rithm [29] approximates the Pareto frontier of architectures
under multiple objectives. SNAS [6] and ProxylessNAS [7]
handle hardware-friendly objectives, i.e., latency, to tailor
the search for specific devices, i.e., CPU, GPU, or Mobile,
by adding regularizers to the loss. Instead of introducing
penalty terms, which necessitates repeated search runs,
DDAS generates the Pareto frontier in a single search by judi-
ciously striking a balance between exploitation and explo-
ration. A similar one-shot Pareto frontier search scheme is
presented in [30], which decouples supernet training and
search, and uses a progressive shrinking trick to combat
interference between child models. In contrast, DDAS solves
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the supernet training and architecture search as a holistic
problem, relying on the ability of DDPG to discover and train
important architectures on the Pareto frontier in a continuous
search space.

Ill. METHODOLOGY

In this section, we present the detailed mechanisms of the
proposed DDAS. We first define our search space, from
which we form and train the supernet. We then present our
DDPG agent and environment, followed by a description of
the training procedure and methods to balance exploitation
and exploration.

A. THE SUPERNET ENVIRONMENT

Formally speaking, a supernet is the superposition of all the
possible architectures in a search space. Our environment
is a supernet that is similar to the Convolutional Neural
Network supernet in DARTS [5]. It consists of a stem layer
that performs several preliminary convolutions, followed by a
sequence of stacked cells, and finally, a head that performs the
classification. As in DARTS, two types of cells are considered
in our search process: a normal cell and a reduction cell.
Reduction cells contain convolution operations with strides
of 2 and are responsible for halving the width and height of
data tensors while doubling the number of channels. Normal
cells do not modify the dimension of input data and con-
tain operations with strides of 1. All networks contain two
reduction cells, positioned one and two thirds into the entire
network, respectively. All other cells are normal cells.

The search is conducted for cell architectures. A cell is
defined as a directed acyclic graph (DAG) of N ordered
nodes, including two input nodes and one output node, along
with an edge set E. Each node represents a latent vector.
A pair of nodes (i,j) is connected by a directed edge if
i < Jj, which represents a set of predefined operations. Let
x; denote the latent vector corresponding to node i, O be the
set of predefined operations, and a € RIZ 110l represent the
weights for the operations on the edges of the DAG.

For each directed edge (i, j), we compute a weighted sum
fi,j(x;) of all possible operators o(.) € O applied onto x;,
ie., o(x;):

Fi@i) = ) ai00i). 6
0eO

The latent vector x; for each intermediate node j is then

computed as the sum of outputs from all its preceding nodes,
i.e., Xj = ijf,-,j(x,-).

The two input nodes of a cell are connected to the output
nodes of the previous two cells, respectively. The output node
of a cell is obtained by concatenating the latent vectors of all
the intermediate nodes in the cell.

In the following we will present the actor-critic frame-
work of the DDPG algorithm and its application to Deep
Deterministic Architecture Sampling.

B. THE DDPG AGENT
In RL, at time-step ¢, an agent in state s; interacts with an
environment by executing an action a;. The environment in
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turn returns a reward, ¢, and the agent observes the next state,
st+1. The goal of the agent is to maximize its return R =
Z:T:o y'r; over T time steps subject to a discounting factor
y. Generally, in continuing tasks [26] such as ours with an
infinite horizon, T = oo and y € [0, 1).

DDPG adopts an actor-critic framework. The actor u(.) is
aneural network that takes a state s; as its input, and produces
an action

ar = u(sy) + 27, (2)

where Z; is a noise added to the actor’s output to encourage
exploration of architectures. The critic Q(s;, a;) is a neural
network that is trained to maximize the return by predict-
ing the action value of a state-action pair (s, a;). On the
other hand, the actor learns the optimal policy necessary to
maximize the return.

A replay buffer is used to store the interactions of the agent
with the environment, the supernet, in a form of experience
tuples (s¢, ar, 1t, St+1). Experiences are randomly sampled
with replacement to train the actor and critic.

C. INTERACTION WITH THE ENVIRONMENT

We now describe the DDPG agent’s interaction with the
environment through the action, state and reward. We split
all the available training data into two non-overlapping sets,
the training data Dr and validation data Dy ; the first is used
for training the supernet weights w while the latter is used to
evaluate the performance of a given architecture. The DDAS
procedure is illustrated in Figure 1.

We first initialize the environment by setting every element
of o to one to obtain the supernet with all the operations
present. Then, we warm up the supernet with several epochs
of training [3], [4]. The accuracy of the warmed-up one shot
model OS is denoted by Acc(OS).

The DDPG agent interacts with the environment in an
iterative process. In particular, the actor network of DDAS,
will output the action a; = «;, where «; represents the o
generated at time step . We then use Algorithm 1 to discretize
o; to obtain (xtd e {0, 1}‘E‘X|O|. Recall the notation used
in Section III-A and Equation 1, specifically. Algorithm 1
follows the procedure DARTS [5] use to discretize a single
architecture at the end of a search experiment. That is, for a
given intermediate node j, we select the top 2 edges with the
highest operation weights incoming from all its predecessor
nodes i; i < j. Then we discretize the two edges by setting
the index of the operation with highest weight on each edge
to 1. All other entries are set to 0. Following Equation 1,
the operation-edge entries set to 1 are allowed to perform
computation uninhibited, while all others are effectively dis-
abled. When discretizing each subsequent node j+ 1, we must
consider an additional edge, stemming from all the nodes we
had to consider when discretizing node j, as well as the edge
between nodes j and j + 1. Although the number of edges to
consider increases with the number of nodes, the number of
edges to be discretized per node is always 2.
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One-shot Model
a=1

t=t+1 Action at

Discretize

Experience
(st, at, rt, St+1)

T— Performance r¢ (—I

Train/Evaluate

Architecture atd

— ~d
St+1 = Oy

FIGURE 1. An illustration of one DDAS step. Starting from one-shot model
training, DDAS selects a continuous action for discretization into a
discrete architecture. The architecture is then fine-tuned and evaluated to
obtain the accuracy and loss, which are used to compute the reward. The
state, action, reward and next state are stored as an experience.

In fact, ocf corresponds to a single deterministic architec-
ture, with a controlled complexity of only 2 |[N| edges that
can perform operations. Only the corresponding weights of
this architecture will be updated by SGD.

Next, using the supernet as well as the training and
evaluation datasets, the discretized architecture o will be
fine-tuned and evaluated by the environment according to
Algorithm 2 to obtain the reward r; and next state s 1.

To calculate the reward, we first compute the incremental
changes in accuracy Acc(oeld ) and loss Ev(atd ) as compared
to the one-shot model and previously selected architecture,
respectively, as

AAcc; = Acc(a?) — Acc(0S),

AL = —Ly(a) + Ly (). 3)
Next, we define the reward r; for time step ¢ as
A L
=t )

The accuracy term encourages the DDAS agent to select
well-performing architectures, while the validation loss
term (e.g., cross-entropy loss in the case of classification)

Algorithm 1 Discretize

1: Input: Continuous a; € RIEIXIO|

2: Output: Discrete o € {0, 1}/EI*I0I

3: Start=0,n =1

4 af = QEIXIO)

5: forj=0,1,..,|[N|—1do > N intermediate nodes
6: End = Start +n

7: A = ay[Start : End, :] > Edges of node j
8: ((i, D1, 01) = arg max (. j),0) Aj),o >i<j
9 ((,))2,02) = AgMAX((G j),0):i. )i Al
10:  of[Start + (i, )1, 01] = 1
;. af[Start 4 (i, j)2, 02] = 1
12: Start = End + 1

13: n=n+1
14: end for
15: Return o¢
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Algorithm 2 Architecture Sampling and Evaluation

Input: Action «;

Input: Supernet S

Input: Datasets Dr, Dy

atd < Discretize(oy)

Assign architecture a¢ to S to get S(a?)

for M minibatches do
Sample a minibatch m from Dr
Update S (atd ) using m

end for

Evaluate S (a[d) on Dy to get Acc(a;i) and Ev(afi)

: Compute r; from Acc(af ) and Ev(a;l ) > Eq. 4

s = af

ct<—t+1

: Return ry, s¢41

>Eq. 2

> Algorithm 1

> Eq. 1

R A A S o

GG G

encourages the agent to constantly improve. Moreover,
the addition of loss in the reward is empirically critical
to addressing concerns raised by [10]; that the policies of
popular NAS algorithms become indistinguishable from ran-
dom search. As Figure 2 shows, without a loss component,
the actor policy eventually degenerates into random search.

Finally, the agent sets the next state to the selected archi-
tecture, i.e., S;41 = atd, and continues the process to find a
better architecture.

D. EXPLORATION AND EXPLOITATION

The goal of DDAS is to generate a Pareto frontier of archi-
tectures in terms of accuracy and FLOPS through a single run
of the algorithm. Intuitively speaking, we can also obtain the
Pareto frontier by warming up the supernet and then applying
random search or evolutionary algorithms over architectures
that inherit weights from the supernet. In contrast, optimiza-
tion schemes such as DARTS, SNAS, etc., are not capable of
depicting the Pareto frontier in one run, as gradient descent
will drive these schemes to train a single or a few large
architectures fully in order to minimize the validation loss of
the selected architecture(s).

The ability of DDAS to discover a better Pareto frontier
in one run critically depends on a balance between explo-
ration and exploitation processes. DDPG splits exploration
and exploitation into two sequential phases. Since DDPG is
off-policy, it benefits from the use of an experiential replay
buffer. In the first phase, neither the actor nor the critic is
used or updated. Instead, the agent accumulates a diverse
collection of state transitions in its replay buffer by sampling
actions from a random distribution. In the second phase,
i.e., the exploitation-centered phase, actions are generated
by the actor using Equation 2. The agent samples a random
batch B of experiences from its replay buffer and uses them to
update the networks. First, the discounted estimation of future
rewards [13] for an arbitrary step i is computed as,

ri =y 0O (siy1, W (six1)), ®)

where Q' and ' are the target networks used to aid in the
training procedure. We refer the reader to [13], [31] for
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FIGURE 2. Comparison of variants of DDAS with Random Search (a) on
CIFAR-10 under different reward functions. Variants include DDAS using
only the accuracy term (b), only the loss term (c) and the full reward (d).
After 500 initial steps of random sampling, DDAS becomes unstable and
nearly indistinguishable from random search when either the loss or
accuracy terms are removed from the reward. We run each variant 3 times
and plot the mean and standard deviation.

further details. The following loss is then used to update the
critic,

1 /
Leriie = 7 Y _(ri+r{ — Olsi, ap))’. (6)
|B| ieB
The actor network is then updated using a sampled policy
gradient from the critic,
1

EAclor = ﬁ

> OGsi. ulsi). @)

ieB
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One caveat of Equation 6 is that given our definition of
the reward, the actor will learn to sample the same (and
most likely large) architecture repeatedly regardless of the
state in order to train this architecture fully to increase the
validation performance. In DDAS, we introduce exploration
in architecture sampling through the use of two types of noise.

First, we introduce exploration during the exploitation
phase by adding a Gaussian noise to the actor’s output in
every step, as in Equation 2. However, it may not be strong
enough to completely randomize the actions. Rather, it per-
turbs « such that when discretized into ¢, it is in the same
neighborhood of the actor’s output. If the agent samples from
a small neighborhood repeatedly, the validation performance
will be guaranteed to improve, as the shared weights are
repeatedly updated.

To further encourage exploration in DDAS, we introduce
a new phase to follow the normal exploitation phase, where
we replace the Gaussian noise by the Ornstein-Uhlenbeck
process [32], which is more effective than Gaussian
noise at overwriting actions [13]. Thus, we do not add
Ornstein-Uhlenbeck process to the actor output in every step.
When the agent detects that o has been stagnant, measured by
observing minimal changes from step-to-step, for a number
of steps Ty, the new noise is added to the actor’s output
for the next Ty, steps. When the noise is off, the agent
will focus on a small number of architectures that the critic
deems worthwhile and continuously train their weights, driv-
ing up the validation performance. On the other hand, when
the Ornstein-Uhlenbeck process is temporarily introduced,
the newly selected architectures will become radically differ-
ent, yet still having a few shared weights overlapped with pre-
viously selected architectures. This overlap of shared weights
can be used to boost the performance of the newly selected
architectures.

Through a combined use of the above two types of noise,
the DDAS agent can switch attention to seldom sampled
architectures including the smaller architectures, so that the
Pareto front in terms of validation accuracy and FLOPS can
be uplifted.

E. COMPUTATIONAL COMPLEXITY

The time complexity of differentiable NAS algorithms [5],
[6], [20], [21], [33] is linearly bound by the number of
epochs the search algorithm will execute for, which itself
is a hyperparameter. While this bound provides a simple
means to estimate the time it will take an experiment to run,
the time to execute a single epoch can vary depending on the
type of algorithm used. For example, DARTS [5] performs
search using first and second-order gradient descent, the latter
optimization being the more computationally expensive and
slower of the two.

In contrast, the time complexity of DDAS can be measured
using three metrics: The number of one-shot training epochs,
the total number of RL time-steps 7, and the number of
minibatch updates per step M as in Algorithm 2. Given that
supernets can be trained once and re-used multiple times,
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the computational cost of the first factor is seldom incurred.
T is analogous to the number of epochs that differentiable
NAS algorithms run for, as it is the number that directly
quantifies the search time of the algorithm. However, most
differentiable NAS algorithms run for less than 100 epochs,
each epoch representing one whole pass through the training
dataset. Meanwhile, one time step does not constitute one
whole pass through the dataset. Rather, the M batches of data
used per step constitute a small fraction of the entire dataset.
This allows the search algorithm to report the performance of
more architectures as many time steps can be executed in the
time it takes to execute a full epoch.

IV. EXPERIMENTAL RESULTS

In this section we present and discuss the experimental results
of the proposed DDAS. We first elaborate on our experimen-
tal setup in terms of dataset, one-shot supernet models as
well as enumerate on several algorithm configurations to be
tested. We then perform search and evaluation experiments.
To illustrate the effect of different algorithm configurations,
we provide plots of accuracy growth over the course of a
search experiment as well as Pareto frontiers of the best
architectures found during search and evaluation.

A. EXPERIMENTAL SETUP

We perform our experiment on two image classification
datasets, CIFAR-10 and CIFAR-100 [16]. Both contain 60k
images each, of dimension size 32 x 32, with ten classes for
CIFAR-10 and one hundred classes for CIFAR-100. Archi-
tecture search is performed on a data split similar to DARTS,
resulting in a training set Dr, validation set Dy, and test set
with sizes 25k, 25k, and 10k samples, respectively. Further
evaluation of the best architectures found involves training
on the official CIFAR-10 and CIFAR-100 splits that partition
the data into 50k training samples and 10k testing samples.

1) WARMED-UP SUPERNET

We warm up all our architecture search experiments by
training a 6-cell (with 4 normal cells and 2 reduction cells)
one-shot supernet for 75 epochs on Dr with all elements of
o set to one. Each cell contains 7 nodes, of which there are
2 input nodes, 1 output node and 4 intermediate nodes. There
are 8 operations and 14 edges. Supernet training typically
takes less than 6 GPU hours.

2) ARCHITECTURE SAMPLING WITH DDAS

We initialize DDAS with the warmed up supernet and start
the architecture sampling process. For every sampled archi-
tecture, the supernet is trained for 25 batches on D7 to fit
the supernet’s weights to their new architecture configuration.
We evaluate a total of 4 methods, consisting of a Random
Search baseline and 3 different DDAS configurations. Given
that the additive noise Z; added to actions ‘“‘can be chosen
to suit the environment™ [13], these configuration methods
are primarily differentiated by the choice of Z; and how it is
applied. All 4 methods are provided below:
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validation accuracy the warmed-up supernet obtained prior to architecture search. It is horizontal, as the value corresponds to the

Acc(0S) scalar used in Equation 3.

1) Random Search (RS): Following [9], we search
on the supernet by randomly sampling architec-
tures from Uniform(0, 1)EXIO! before performing
discretization.

2) Noiseless (DDAS-NL): After an initial 500 steps of

exploration, DDAS enters an almost purely determin-

istic exploitation phase where Z, = U(—1073,1072).

Gaussian (DDAS-G): Same as DDAS-NL, we engender

further exploration during the exploitation phase by

disrupting the actor’s output a; with a noise sampled

from a Normal distribution, Z, = N0, 0.05).

4-Stage (DDAS-4S). Behaves like DDAS-G for the

first 500 steps of the exploitation phase. In the last

500 steps of the experiment, the additive noise is turned

off by default, Z, = 0, then re-enabled sporadically.

The key difference is that the agent keeps track of

selected architectures. Algorithm 1 reduces the number

of operation-performing edges per cell type from 14 to

8, for a total of 16 across both cell types. The agent

considers two architectures to be similar if less than

6 of the 16 activated operation-edge pairs between the

normal and reduction cells are different. If the agent

detects that it has been selecting a similar architecture
for Ty, = 32 steps in a row, then a large, [32] noise
will be added to the actor output for the next Ty, steps.

Each method runs for 1,500 steps and takes 1 GPU day to
finish. For each experiment we obtain the best architecture
found by DDAS with the highest validation accuracy on
a given dataset. For every architecture sampled by DDAS,
we calculate both the number of FLOPS and model param-
eters assuming the architecture was instantiated on a 6-cell
network. We construct the Pareto frontier from each sam-
pled architecture’s validation accuracy on the supernet, con-
strained by the number of FLOPS/parameters on the 6-cell
network.

In the second half of our experiments, we forwarded many
of the architectures found on the FLOPS Pareto frontiers for
further evaluation on larger models for 600 epochs each. The

3)

4)
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number of cells used were 10 and 20 for CIFAR-10 and
CIFAR-100, respectively.

Lastly, we took the absolute best performing architecture
from each experimental setting and compared their test accu-
racies against those of several related NAS algorithms. For
comparisons on CIFAR-10, we re-trained these architectures
using 20 cell models in order to perfectly match the hyperpa-
rameter choices of DARTS [5].

B. EVALUATION AND COMPARISON

Search validation curves for all experiments are illustrated by
Figure 3. All variants of DDAS demonstrate a clear supe-
riority over random search. The performance of DDAS-NL
is the quickest to rise following the initial exploration steps.
Moreover, the behaviour of DDAS-NL in Figure 3 on both
datasets is consistent with Figure 2(d). A sharp rise in accu-
racy occurs after the initial steps of random actions before
performance tapers off as it approaches the one-shot accuracy.
DDAS-G and DDAS-4S take a few hundred additional steps
before they surpass random search. Additionally, dips and
rises in the plots of DDAS-4S clearly denote the time steps
where a large noise is added to the actor output. The validation
Pareto frontiers found by our search experiments, in terms
of FLOPS, are presented in Figure 4. Architectures on these
curves were selected for further evaluation through larger
models. Note how well DDAS-NL appears to outperform all
other methods in terms of validation performance over time,
Pareto frontier regions corresponding to smaller FLOPS are
dominated by DDAS-G and DDAS-4S.

We adopt the definition introduced by [11] for measuring
the width and depth of NAS cells. These metrics are a means
of quantifying the degree of exploration the search algorithm
is performing in terms of the cell topologies selected among
high-performing architectures. A narrow distribution of cell
widths centered around a high number indicates a systemic
and undesirable preference for shallower architectures and
therefore low exploration. Denoted with ‘c’, the width is the
average number of edges originating from the input nodes,
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can take values between 0.5 and 4.

while the depth is the length of the longest path between the
input and output nodes. We exclude the ‘none’ operation from
these calculations. Put quantitatively, in the case of DARTS,
a ‘wide cell’ has a width of approximately 3c or more, corre-
sponding to at least 6 of the 8 edges in E originating from one
of the input nodes, rather than linking one intermediate node
to another. More specifically, the normal cell found by the
second-order DARTS [5] has a width and depth of 3.5¢ and 3,
respectively, while the reduction cell has a width of 2.5¢ and
a depth of 3.

Figure 5 displays the histograms of cell widths for cells in
the top 5% accuracy percentile for all experiments on both
datasets. The distribution of architectures for both datasets
resembles that of a Gaussian distribution centered around
2.5; corresponding to 2-3 edges per input node, in the case
of CIFAR-10. For CIFAR-100, the distribution of normal
cells more closely resembles a uniform distribution bounded
between 2 and 4. Reduction cell widths follow a narrow
Gaussian centered around 2.5. Regardless of the distribution,
it is clear that respectable accuracy metrics can be found
across a spectrum of cell widths—high accuracies are not
limited to a narrow range of cells with large widths. These
findings corroborate our claim that NAS algorithms should
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incorporate a higher degree of exploration and avoid being
biased toward a specific type of topologies.

Test set Pareto frontiers, in terms of both FLOPS and total
number of parameters on CIFAR-10 and CIFAR-100, are
given by Figures 6 and 7, respectively. By test set accuracy,
the Pareto frontiers of all three DDAS configurations are
higher than those of RS in at least one region. This reflects
the search curves where their architectures were chosen from.
DDAS-NL is the sole exception to this observation. DDAS-NL
produced the highest test score on CIFAR-10 and the highest
validation scores on both datasets. According to Figure 4,
the only architectures DDAS-NL chose that had a small
number of FLOPS were sampled during the initial 500-step
exploration phase, or shortly afterward. When comparing
DDAS-G to DDAS-4S we observe that their evaluation Pareto
frontiers almost identically match the ones generated during
the search. On CIFAR-10, DDAS-G is better at sampling
low-FLOPS architectures, but is eventually overtaken by
DDAS-4S. Meanwhile, on CIFAR-100, the DDAS-4S Pareto
frontiers completely dominate DDAS-G on both search and
evaluation.

Our best cell architectures for CIFAR-10 and 100 are given
by Figures 8 and 9, respectively. With exception to the normal
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considered a part of E. These cells were found using the four-stage configuration (DDAS-4S) at step 1483.

cell for CIFAR-100, no cell has a width above 3 nor a depth
smaller than 3. This demonstrates that DDAS is not prone
to the same issue as cells found by other NAS algorithms as
listed by [11]. That is, the layout of the cells do not resemble a
wide, shallow neural network; each input is not simply passed
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to each node independently before being aggregated at the
output. Instead, the inputs are subject to a series of sequential
operations as they are passed from one node onto the next.
Next, we compare the test performance of the best archi-
tectures found by all four of our methods to those reported by
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TABLE 1. Comparison of DDAS schemes with related NAS weight sharing algorithms in terms of test accuracy, FLOPS and number of parameters.

CIFAR-10 CIFAR-100

Architecture FLOPS [G] | Params [M] | Test Acc. (%) FLOPS [G] | Params [M] | Test Acc. (%)
DARTS First Order 1.022 3.65 97.00 + 0.14 1.022 3.77 82.37
DARTS Second Order 1.078 3.83 97.24 £+ 0.09 1.078 3.95 82.65
ENAS - 4.60 97.11 - - -
ProxylessNAS-G - 5.70 97.92 - - -
GDAS - 3.40 97.07 - 3.40 81.62
GDAS (FRC) - 2.50 97.18 - 2.50 81.87
SNAS (Mild Const.) - 2.90 97.02 - - -
SNAS (Moderate Const.) - 2.80 97.15 - - -
RS 1.024 3.67 97.16 0.920 3.55 80.76
DDAS-NL 0.876 3.23 97.27 1.106 4.04 81.34
DDAS-G 0.839 3.10 96.81 0916 347 80.88
DDAS-4S 0.842 3.07 96.74 0.814 3.14 82.00

several related NAS algorithms that use weight sharing and
rely on a few GPUs. The results are given in Table 1. We man-
ually evaluated the publicly available architectures found by
DARTS first-order and second-order on CIFAR-100.

Table 1 provides evidence that DDAS is superior to
ENAS [8], GDAS [21] and SNAS [6], where the latter
two employs exploration in the form of Gumbel Softmax.
The only architectures whose scores are higher than DDAS
are ProxylessNAS [7] on CIFAR-10 and DARTS [5] on
CIFAR-100. Both methods achieve their high accuracy
metrics at the cost of substantially larger model sizes.

Comparing our experimental configurations against each
other, we observe the superiority of DDAS-NL and Random
Search over DDAS-G and DDAS-4S on CIFAR-10. Both of
these algorithms favored architectures with a much higher
number of parameters than DDAS-G and DDAS-4S. Most
notably Random Search is the more inefficient of the two.
Moreover, the situation is partially true on CIFAR-100,
where DDAS-G and DDAS-4S reign supreme with fewer
parameters.

DDAS-NL is most comparable to gradient-based NAS
algorithms due to a low, almost negligible amount of explo-
ration during exploitation. Conversely, DDAS-4S encorpo-
rates mechanisms that allow it to actively fight against the
sampled policy gradient of its critic, while DDAS-G does not
heavily depart from the original specification of DDPG given
by [13]. On CIFAR-100 DDAS-4S completely outperformed
DDAS-NL, both in terms of performance and parameter
efficiency. CIFAR-100 is inherently more difficult to classify
than CIFAR-10 due to having the same number of samples
but 10 times as many classes and therefore 10 times fewer
samples per class. Thus, it can be said that DDAS-4S demon-
strates the benefits of modifying RL algorithms beyond the
scope of their original theory for use in NAS problems.
In addition, we approximated the slope of accuracy against
FLOPS or parameters using linear regression. For CIFAR-10,
we found that test accuracy increased at rates of 2.86%
per gigaFLOPS and 2.123% per million parameters, both
with linear correlations over 0.93. For CIFAR-100, these
values are higher at 4.03% per gigaFLOPS and 3.196%
per million parameters, linearly correlated over 0.86. These
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TABLE 2. Spearman correlation coefficients between validation and
evaluation accuracies for Pareto front cells.

Setting CIFAR-10 | CIFAR-100
RS 0.964 1.000
DDAS-NL 0.881 0.826
DDAS-G 0.886 0.810
DDAS-4S 0.886 0.600

metrics quantify the small loss of accuracy entailed by
downsizing model size and indicate the ability of DDAS to
find resource-efficient architectures for practical deployment.

We also computed the ranking correlation between the
validation and evaluation scores of all Pareto frontier archi-
tectures we evaluated. The Spearman coefficients are given
in Table 2. Random Search achieves the highest correlation on
both datasets as it performs a uniform scan of the search space
and does not focus on specific regions. As shown in Figures 4,
Random Search performance struggles to improve past 45
megaFLOPS, resulting in only a handful of architectures
being selected in high FLOPS regions. Thus, most of the Ran-
dom Search architectures are located in low FLOPS regions
where small increases in FLOPS have a greater impact on
accuracy. On both datasets, all three DDAS configurations
achieve high correlation coefficients that exceed 0.5. This is
because DDAS is a guided algorithm that searches dispro-
portionately and focuses on learning where high-performance
architectures are likely to be found, and therefore finds larger
architectures where the choice of operation and topology play
a larger role in determining accuracy.

Finally, the search cost of DDAS is relatively comparable
to DARTS. On a single RTX 2080 Ti GPU, DDAS takes
approximately 6 GPU hours to train a one-shot model which
only needs to be pre-trained once and can be re-used in
multiple searches. Search itself costs approximately 1 GPU
day to run for 1,500 steps. It is worth noting that DARTS, and
GDAS ran their search experiments four or three times with
different random seeds in order to pick the best architecture
according to the validation accuracy. Repeated searches are
a mechanism to encourage exploration. In contrast, DDAS
is designed to explore, train and identify a range of good
architectures in the same search run.
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V. CONCLUSION

In this paper, we introduce Deep Deterministic Architecture
Search (DDAS), an algorithm based on deep deterministic
policy gradient (DDPG) in Reinforcement Learning, to thor-
oughly explore a neural architecture search space and per-
form neural architecture search by sampling and training
architectures on a weight-sharing supernet. Unlike prior rein-
forcement learning schemes for NAS which use stochastic
policy gradient to sample architectures, DDAS uses a deter-
ministic policy and leverages the ability of DDPG to handle
high-dimensional control in a continuous space. Coupled
with a loss-based reward function, the policy of DDAS is dis-
tinct from random search and can learn to focus on important
regions of the search space.

Furthermore, DDAS addresses the lack-of-exploration
issue present in recent optimization-based NAS frameworks
via several exploration schemes. Unlike gradient-based NAS
schemes such as DARTS or GDAS, which perform mul-
tiple search runs to produce a single architecture, DDAS
instead performs one long search experiment which produces
a Pareto frontier containing a spectrum of architectures. As
a result, DDAS is capable of generating architectures for
flexible deployment on target hardware where FLOPS or
model size may be constrained, without the need to incor-
porate a specific resource penalty into the reward. Addition-
ally, the cells produced by DDAS are not always wide and
shallow or biased toward a specific type of topologies. We
performed extensive experiments on CIFAR-10 and CIFAR-
100 in a wide range of experimental settings. With a test
accuracy of 97.27%, experimental results have shown that
DDAS is capable of generating architectures that outperform
the original DARTS with a lower number of parameters on
CIFAR-10. On CIFAR-100, DDAS finds an architecture that
is capable of achieving 82.00% test accuracy with only 3.14M
parameters, outperforming GDAS. In addition, in a single
search algorithm run for 1 GPU day, DDAS can produce
Pareto frontiers that outperform random search based on a
warm-started supernet, demonstrating its superior capability
to automatically explore and discover important regions of a
neural architecture search space.

APPENDIX
A. OPERATIONS
The operation set O used in the DARTS search space consists
of the following:
1) None (Zero input tensor)
2) Maximum Pooling 3 x 3
3) Average Pooling 3 x 3
4) Skip Connection
5) Separable Convolution 3 x 3
6) Separable Convolution 5 x 5
7) Dilation Convolution 3 x 3
8) Dilation Convolution 5 x 5

‘We make no change to these operations relative to how they
are implemented by DARTS [5] and allow each of them to be
selected by Algorithm 1.
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B. HYPERPARAMETERS IN SEARCH

Our weight-sharing search models, modified from DARTS
[5], all have 6 cells (4 normal and 2 reduction cells). Data
enters through a head which applies a channel multiplier
of 16 as well as a few preliminary convolution operations,
before being passed on to the cells. A batch size of 64 is
used at all times, and each supernet is trained over the course
of 75 epochs on the 25k training set, Dr. We followed the
precedent set by DARTS [5] and utilized a stochastic gradient
descent optimizer with momentum. During one-shot super-
net training, the initial learning rate is set to 2.5 x 1072,
but is annealed down to 1073 by a cosine schedule with-
out restarts [34]. When searching for an architecture using
DDAS, we set the learning rate to a constant value of 1073,
For reproducibility, all experiments are initialized with the
same random seed values of 2 for search and O for evaluation.
Random seeds values of 0, 1 and 2 were used to generate
Figure 2.

C. HYPERPARAMETERS USED IN EVALUATION

Once a cell architecture is found and sent for evaluation
(testing), the tested network consists of 10 or 20 cells for
CIFAR-10 and CIFAR-100, respectively. The channel multi-
plier present at the beginning of a network is increased to 36.
The same cosine annealed SGD with momentum optimizer is
used here, except now the learning rate is annealed down to a
value of 0 over the course of every experiment, all of which
lasted 600 epochs with a batch size of 96. Finally, we also
made use of DARTS path dropout feature, with a probability
of 0.2, and an auxiliary head with a weight of 0.4.

When further evaluating the best CIFAR-10 architectures
for Table 1, we re-ran the evaluation experiments with
20 cells. This allowed us to directly compare our results with
those of DARTS [5]. In all experiments, we made use of
Cutout [35] using the recommended lengths for CIFAR-10
and CIFAR-100.

D. REINFORCEMENT LEARNING

HYPERPARAMETERS IN DDAS

We first describe the hyperparameters common to all versions
of DDAS, before listing the hyperparameter discrepancies
among different DDAS versions in Table 3. Our RL code is
based off of [36].

The actor and critic networks of DDAS are both MLPs
with 3 hidden layers and 256 neurons in each layer that
receive vectorized o matrices as input. Both networks are
trained using Adam [37] with its default parameters of ,é =
(0.9, 0.99) and learning rates of 10~* and 1073, respectively.
ReLU [38] is used as the internal activation function for
both the actor and the critic. However, the actor’s final layer
uses a sigmoid activation (o) to truncate the output into the
range (0, 1). The critic does not utilize any final activation
at all, because it produces a scalar. The target networks (see
DDPG [13] for details) are synchronized at every step using
a mixing coefficient of 1073, The replay buffer is truncated
to only hold experiences from the last 500 time steps during
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TABLE 3. Hyperparameters specific to different versions of DDAS

algorithms.
Setting Explore | Exploit | Final Z Baploit Z4s
Steps Steps Steps
DDAS-NL 500 1,000 0 U(-107°,107°) | N/A
DDAS-G 500 1,000 0 N(0,0.05) N/A
DDAS-4S 500 500 500 N(0,0.05) [29]

Phase 4. The size of the buffer is 10° at all other times. The
number of experiences, |B|, sampled from the replay buffer is
always 64. The discount factor y is set to 0.99.

DDAS uses a Gaussian noise N(0,0.05) during its
exploitation phase (DDAS-G) before adopting the Ornstein-

Uh
Un
ple

lenbeck [32] process for its final, fourth stage (DDAS-4S).
like DDPG [13], the actor and critic networks are com-
tely separate with no overlap between their parameters.

We do not apply any regularization to either network.

E.

COMPUTING PLATFORMS

Workstations used to run our experiments were equipped with
Threadripper 2990WX processors, with two exceptions: One
computer used a Ryzen 9 3900X, and the other was equipped
with a Intel Core 19-9900X. All systems were equipped with
dual RTX 2080 Ti GPUs.
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