
Received May 17, 2021, accepted July 22, 2021, date of publication August 2, 2021, date of current version August 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3101975

Exploring Neural Architecture Search Space via
Deep Deterministic Sampling
KEITH G. MILLS 1,2, MOHAMMAD SALAMEH 2, DI NIU 1, FRED X. HAN 2,
SEYED SAEED CHANGIZ REZAEI 2, HENGSHUAI YAO 2,3, WEI LU 2,
SHUO LIAN 4, AND SHANGLING JUI 4
1Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
2Huawei Technologies Canada Company Ltd., Edmonton, AB T6G 2C8, Canada
3Department of Computing Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
4Huawei Kirin Solution, Shanghai 201206, China

Corresponding author: Keith G. Mills (kgmills@ualberta.ca)

ABSTRACT Recent developments in Neural Architecture Search (NAS) resort to training the supernet
of a predefined search space with weight sharing to speed up architecture evaluation. These include
random search schemes, as well as various schemes based on optimization or reinforcement learning,
in particular policy gradient, that aim to optimize a parametric architecture distribution and the shared
model weights simultaneously. In this paper, we focus on efficiently exploring the important region of a
neural architecture search space with reinforcement learning. We propose Deep Deterministic Architecture
Sampling (DDAS) based on deep deterministic policy gradient and the actor-critic framework, to selectively
sample important architectures in the supernet for training. Through balancing exploitation and exploration,
DDAS is designed to combat the disadvantages of prior random supernet warm-up schemes and optimization
schemes. Gradient-based NAS approaches require the execution of multiple short experiments in order to
combat the random stochastic nature of gradient descent, while still only producing a single architecture.
Contrary to this approach, DDAS employs a reinforcement learning-based agent and focuses on discovering
a Pareto frontier containing many architectures over the course of a single experiment requiring 1 GPU day.
Experimental results for CIFAR-10 and CIFAR-100 on the DARTS search space show that DDAS can depict
in a single search, the accuracy-FLOPs (or model size) Pareto frontier, which outperforms random sampling
and search.With a test accuracy of 97.27%, the best architecture found onCIFAR-10 outperforms the original
second-order DARTSwhile using 600M fewer parameters. Additionally, DDASfinds an architecture capable
of achieving 82.00% test accuracy on CIFAR-100 while using only 3.14M parameters and outperforming
GDAS.

INDEX TERMS Neural architecture search, reinforcement learning, differentiable optimization.

I. INTRODUCTION
Manual neural architecture design demands laborious efforts
accompanied by time-consuming experimentation for model
evaluation. Neural Architecture Search (NAS) mitigates the
hurdles of hand-crafted designs by using algorithms to search
for the best architecture, given a particular task. Despite
showing remarkable improvements in image classification
and language modeling tasks, NAS algorithms that rely on
Evolutionary Algorithms [1] or Reinforcement learning (RL)
[2] suffer from the evaluation bottleneck. The evaluation
process of architectures generated by such algorithms is

The associate editor coordinating the review of this manuscript and

approving it for publication was Valentina E. Balas .

computationally expensive and requires the use of a large
number of GPUs.

Recent developments have given rise to one-shot architec-
ture search [3], [4], in which a one-shot model or supernet
as a superposition of all candidate architectures is trained by
sharing weights among all architectures. One-shot architec-
ture search has reduced the search cost down to one or a
few GPU days, as the evaluation of individual architectures
is now converted to an alternative process of training a single
supernet and validating individual architectures based on the
shared weights inherited from the supernet.

Various methods have been proposed to optimize a para-
metric architecture distribution while updating the shared
weights. DARTS [5] parameterizes the search space through

110962 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-6054-1798
https://orcid.org/0000-0001-9266-4637
https://orcid.org/0000-0002-5250-7327
https://orcid.org/0000-0001-9379-2147
https://orcid.org/0000-0002-8106-1571
https://orcid.org/0000-0003-1258-1845
https://orcid.org/0000-0002-5046-4001
https://orcid.org/0000-0003-2326-8344
https://orcid.org/0000-0002-1047-4264
https://orcid.org/0000-0003-0885-1283

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

a set of differentiable operation weights α and relies on
gradient-based optimization algorithms to simultaneously
optimize the operation weights and the sharedmodel weights,
in a process known as bi-level optimization. Gradient-based
optimization algorithms have further been used for architec-
ture sampling based onGumbel Softmax (e.g., SNAS [6]) and
architecture distribution binarization (e.g., ProxylessNAS
[7]). On the other hand, ENAS [8] uses an RNN-based policy
to sample discrete architectures for training, and adjusts the
policy toward increased validation accuracy using the policy
gradient method in reinforcement learning.

However, there have been concerns that the policies of pop-
ular NAS algorithms and the architectures they produce are
not decisively better than those of Random Search [9], [10],
which samples architectures uniformly at random. Moreover,
it has been found that most cell-based NAS algorithms tend
to produce wide and shallow architectures [11]. The class of
cells mentioned above are not superior to deep and narrow
architectures. Rather, by allowing for easier gradient flow,
feature smooth gradient landscapes, they train faster during
the search phase and are thus preferred by existing algorithms
at the cost of a thorough exploration. Therefore, an important
trade-off any weight sharing NAS schemes face is between
exploitation—the ability to locate and fully train the best
architecture, and exploration—the ability to explore large
swathes of a search space to allow the better architectures to
be discovered.

The problem is further complicated by the need for
hardware-friendly architecture search, e.g., by budgeting the
number of FLOPS,1 inference time, or the total number of
parameters that amodel can have. Schemes such as SNAS [6],
RC-DARTS [12] and ProxylessNAS [7] address the problem
by introducing constraints or penalty into their optimization
formulations. In practical deployment, however, the need
for depicting a Pareto frontier of architectures necessitates
repeated executions of these algorithms under different con-
straints, which is costly.

In this paper, we use Reinforcement Learning to efficiently
explore an architecture search space and propose Deep Deter-
ministic Architecture Sampling (DDAS), a weight sharing
NAS algorithm based on Deep Deterministic Policy Gradient
(DDPG) [13], a continuous, off-policy reinforcement learn-
ing algorithm [13], in order to efficiently generate a Pareto
frontier of architectures in terms of the accuracy and FLOPS
(or number of parameters) and find the best architecture, all
in a single run. Specifically, we make the following contribu-
tions.

First, we model NAS as a continuous control problem
in a high-dimensional search space. Similar to DARTS [5],
SNAS [6] and ProxylessNAS [7], we parameterize the search
space using a set of continuous weights of operations that
connect latent vectors. However, instead of updating these
weights of operations with gradient descent or bi-level opti-
mization, we rely on the ability of DDPG to explore and

1Floating point operations used to forward pass a single data sample.

sample them in an actor-critic framework. Empirical evidence
shows that DDPG performs well in high-dimensional control
tasks with continuous actions (e.g., robotic control) [14].

Second, previous reinforcement learning schemes pro-
posed for NAS, e.g., ENAS, mainly use an RNN controller,
which is essentially a stochastic policy, to sample archi-
tectures for training and evaluation. However, due to the
stochastic nature of the policy, the same policy may sample a
large number of different architectures, entailingMonte Carlo
gradient estimates which have large variances. In contrast,
we use a deterministic policy in DDAS, since the determin-
istic policy gradient can be estimated much more efficiently
than the usual stochastic policy gradient, as is shown in DPG
[15] and DDPG [13].

Third, we judiciously design the reward and strike a bal-
ance between exploitation and exploration when updating
the actor and critic networks in DDAS, such that the agent
will maintain a high reward while being allowed to explore
a potentially large space of candidate architectures, which
gradient-based optimization methods fail to fully explore.
In fact, in the pursuit of a higher validation performance,
gradient-based optimization schemes may often converge to
a single large architecture, which is repeatedly selected for
training, preventing these schemes from sampling other archi-
tectures in the search space and generating the Pareto frontier.
In DDAS, the ability of exploration over diverse architec-
tures in the search space is achieved by the use of a com-
bination of noise-based exploration schemes in a continuous
space.

A series of experimental results on CIFAR-10 and CIFAR-
100 [16] suggest that the Pareto frontiers generated by DDAS
show a clear superiority over that of Random Search over a
randomly warm-started supernet [9]. In themeantime, the test
accuracy of the best architectures found by DDAS is compa-
rable to a range of related NAS algorithms that rely on weight
sharing.

II. RELATED WORK
Originally, NAS is a resource-intensive task, since every
candidate architecture must be fully trained to retrieve its
performance, which is then used to guide the search. For
instance, NASNet [17] and AmoebaNet [18] spend over 2000
GPU days to find the best architecture. To reduce this cost,
succeeding works like ENAS [8] and DARTS [5] adopt a
weight-sharing scheme by training a supernet containing
all possible operations/connections. Each architecture then
inherits the corresponding weights from the supernet.

Current NAS techniques mainly branch into two cate-
gories, ones that rely on random search, and ones that attempt
to incrementally learn a distribution of the best architectures.
Under the first category, [3] train an one-shot model once
and then sample architectures from a fixed distribution for
performance estimation and search. [4] sample a single path
uniformly from a supernet to train the shared weights. Sim-
ilarly, [9] randomly sample a child network and only update
its corresponding shared weights. [10], [19] recently provide

VOLUME 9, 2021 110963

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

more insights on the ability of shared weights in the supernet
to represent the true weights of individual architectures.

In comparison, gradient-based methods like DARTS [5]
construct a continuous relaxation of the search space and
learn the degree of contribution of each operation. DARTS
has given rise to many off-shoots, including P-DARTS [20],
an exploitation-driven scheme which aims to bridge the
gap between search and evaluation. It does so by gradually
decreasing the size of the search space while increasing the
size of the searchmodel. However, training the supernets used
by both algorithms requires a large amount of GPU memory.
To this end, SNAS [6] and GDAS [21] instead learn a sam-
pling distribution for each modifiable operation in the search
space of DARTS. ProxylessNAS [7] learns the probabilities
to binarize the operations per edge using BinaryConnect [22].

Our proposed algorithm is related to both DARTS
and sampling-based methods including SNAS, GDAS and
ProxylessNAS, searching for architectures parameterized
by differentiable architecture weights. However, instead of
solving bi-level optimization (as in DARTS) or using Gumbel
Softmax (e.g., as in SNAS, GDAS) or BinaryConnect (as in
ProxylessNAS) to handle the continuous-to-discrete conver-
sion, we use DDPG [13] to generate architecture weights.
Our experimental results show that DDPG achieves better
exploration than optimization-based methods.

Closely related to our work are NAS algorithms based
on Reinforcement Learning, e.g., ENAS [8], NASNet [17],
MNASNet [23], which use either REINFORCE [24] or
Proximal Policy Optimization [25] to learn to sample child
networks in a stochastic manner. These algorithms operate in
an episodic manner [26]. A single architecture is constructed
per episode over multiple time steps and can only be eval-
uated upon completion. A key departure of our work from
the existing RL-based NAS is the use of a deterministic
policy instead of stochastic policies, which results in less
variance in the updates of architecture distributions via policy
gradient. DDAS generates and evaluates one architecture
per step, resulting in a continuing problem with an infinite
horizon. Another difference is that we focus on using the
exploration mechanisms of DDPG to enhance the search of
Pareto frontiers instead of a single best architecture.

Hardware constraints, such as FLOPS, model size and
inference time, are considered by a number of NAS
schemes [23], [27], [28]. Using an Evolutionary-based algo-
rithm [29] approximates the Pareto frontier of architectures
under multiple objectives. SNAS [6] and ProxylessNAS [7]
handle hardware-friendly objectives, i.e., latency, to tailor
the search for specific devices, i.e., CPU, GPU, or Mobile,
by adding regularizers to the loss. Instead of introducing
penalty terms, which necessitates repeated search runs,
DDAS generates the Pareto frontier in a single search by judi-
ciously striking a balance between exploitation and explo-
ration. A similar one-shot Pareto frontier search scheme is
presented in [30], which decouples supernet training and
search, and uses a progressive shrinking trick to combat
interference between child models. In contrast, DDAS solves

the supernet training and architecture search as a holistic
problem, relying on the ability of DDPG to discover and train
important architectures on the Pareto frontier in a continuous
search space.

III. METHODOLOGY
In this section, we present the detailed mechanisms of the
proposed DDAS. We first define our search space, from
which we form and train the supernet. We then present our
DDPG agent and environment, followed by a description of
the training procedure and methods to balance exploitation
and exploration.

A. THE SUPERNET ENVIRONMENT
Formally speaking, a supernet is the superposition of all the
possible architectures in a search space. Our environment
is a supernet that is similar to the Convolutional Neural
Network supernet in DARTS [5]. It consists of a stem layer
that performs several preliminary convolutions, followed by a
sequence of stacked cells, and finally, a head that performs the
classification. As inDARTS, two types of cells are considered
in our search process: a normal cell and a reduction cell.
Reduction cells contain convolution operations with strides
of 2 and are responsible for halving the width and height of
data tensors while doubling the number of channels. Normal
cells do not modify the dimension of input data and con-
tain operations with strides of 1. All networks contain two
reduction cells, positioned one and two thirds into the entire
network, respectively. All other cells are normal cells.

The search is conducted for cell architectures. A cell is
defined as a directed acyclic graph (DAG) of N ordered
nodes, including two input nodes and one output node, along
with an edge set E . Each node represents a latent vector.
A pair of nodes (i, j) is connected by a directed edge if
i < j, which represents a set of predefined operations. Let
xi denote the latent vector corresponding to node i, O be the
set of predefined operations, and α ∈ R|E|×|O| represent the
weights for the operations on the edges of the DAG.

For each directed edge (i, j), we compute a weighted sum
fi,j(xi) of all possible operators o(.) ∈ O applied onto xi,
i.e., o(xi):

fi,j(xi) =
∑
o∈O

α(i,j),oo(xi). (1)

The latent vector xj for each intermediate node j is then
computed as the sum of outputs from all its preceding nodes,
i.e., xj =

∑
i<j fi,j(xi).

The two input nodes of a cell are connected to the output
nodes of the previous two cells, respectively. The output node
of a cell is obtained by concatenating the latent vectors of all
the intermediate nodes in the cell.

In the following we will present the actor-critic frame-
work of the DDPG algorithm and its application to Deep
Deterministic Architecture Sampling.

B. THE DDPG AGENT
In RL, at time-step t , an agent in state st interacts with an
environment by executing an action at . The environment in

110964 VOLUME 9, 2021

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

turn returns a reward, rt , and the agent observes the next state,
st+1. The goal of the agent is to maximize its return R =∑T

t=0 γ
trt over T time steps subject to a discounting factor

γ . Generally, in continuing tasks [26] such as ours with an
infinite horizon, T = ∞ and γ ∈ [0, 1).

DDPG adopts an actor-critic framework. The actor µ(.) is
a neural network that takes a state st as its input, and produces
an action

at = µ(st)+ Zt , (2)

where Zt is a noise added to the actor’s output to encourage
exploration of architectures. The critic Q(st , at) is a neural
network that is trained to maximize the return by predict-
ing the action value of a state-action pair (st , at). On the
other hand, the actor learns the optimal policy necessary to
maximize the return.

A replay buffer is used to store the interactions of the agent
with the environment, the supernet, in a form of experience
tuples (st , at , rt , st+1). Experiences are randomly sampled
with replacement to train the actor and critic.

C. INTERACTION WITH THE ENVIRONMENT
We now describe the DDPG agent’s interaction with the
environment through the action, state and reward. We split
all the available training data into two non-overlapping sets,
the training data DT and validation data DV ; the first is used
for training the supernet weights w while the latter is used to
evaluate the performance of a given architecture. The DDAS
procedure is illustrated in Figure 1.

We first initialize the environment by setting every element
of α to one to obtain the supernet with all the operations
present. Then, we warm up the supernet with several epochs
of training [3], [4]. The accuracy of the warmed-up one shot
model OS is denoted by Acc(OS).

The DDPG agent interacts with the environment in an
iterative process. In particular, the actor network of DDAS,
will output the action at = αt , where αt represents the α
generated at time step t .We then use Algorithm 1 to discretize
αt to obtain αdt ∈ {0, 1}

|E|×|O|. Recall the notation used
in Section III-A and Equation 1, specifically. Algorithm 1
follows the procedure DARTS [5] use to discretize a single
architecture at the end of a search experiment. That is, for a
given intermediate node j, we select the top 2 edges with the
highest operation weights incoming from all its predecessor
nodes i; i < j. Then we discretize the two edges by setting
the index of the operation with highest weight on each edge
to 1. All other entries are set to 0. Following Equation 1,
the operation-edge entries set to 1 are allowed to perform
computation uninhibited, while all others are effectively dis-
abled.When discretizing each subsequent node j+1, wemust
consider an additional edge, stemming from all the nodes we
had to consider when discretizing node j, as well as the edge
between nodes j and j+ 1. Although the number of edges to
consider increases with the number of nodes, the number of
edges to be discretized per node is always 2.

FIGURE 1. An illustration of one DDAS step. Starting from one-shot model
training, DDAS selects a continuous action for discretization into a
discrete architecture. The architecture is then fine-tuned and evaluated to
obtain the accuracy and loss, which are used to compute the reward. The
state, action, reward and next state are stored as an experience.

In fact, αdt corresponds to a single deterministic architec-
ture, with a controlled complexity of only 2 |N | edges that
can perform operations. Only the corresponding weights of
this architecture will be updated by SGD.

Next, using the supernet as well as the training and
evaluation datasets, the discretized architecture αdt will be
fine-tuned and evaluated by the environment according to
Algorithm 2 to obtain the reward rt and next state st+1.
To calculate the reward, we first compute the incremental

changes in accuracy Acc(αdt) and loss LV (αdt) as compared
to the one-shot model and previously selected architecture,
respectively, as

1Acct = Acc(αdt)− Acc(OS),

1Lt = −LV (αdt)+ LV (αdt−1). (3)

Next, we define the reward rt for time step t as

rt =
Acct + Lt

2
. (4)

The accuracy term encourages the DDAS agent to select
well-performing architectures, while the validation loss
term (e.g., cross-entropy loss in the case of classification)

Algorithm 1 Discretize

1: Input: Continuous αt ∈ R|E|×|O|
2: Output: Discrete αdt ∈ {0, 1}

|E|×|O|

3: Start = 0, n = 1
4: αdt = 0|E|×|O|

5: for j = 0, 1, .., |N | − 1 do F N intermediate nodes
6: End = Start+ n
7: A = αt [Start : End, :] F Edges of node j
8: ((i, j)1, o1) = argmax((i,j),o) A(ij),o F i < j
9: ((i, j)2, o2) = argmax((i,j),o):(i,j)6=(i,j)1 A(ij),o
10: αdt [Start+ (i, j)1, o1] = 1
11: αdt [Start+ (i, j)2, o2] = 1
12: Start = End+ 1
13: n = n+ 1
14: end for
15: Return αdt

VOLUME 9, 2021 110965

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

Algorithm 2 Architecture Sampling and Evaluation
1: Input: Action αt F Eq. 2
2: Input: Supernet S
3: Input: Datasets DT , DV
4: αdt ← Discretize(αt) F Algorithm 1
5: Assign architecture αdt to S to get S(αdt)
6: for M minibatches do
7: Sample a minibatch m from DT
8: Update S(αdt) using m F Eq. 1
9: end for

10: Evaluate S(αdt) on DV to get Acc(αdt) and LV (αdt)
11: Compute rt from Acc(αdt) and LV (αdt) F Eq. 4
12: st+1 = αdt
13: t ← t + 1
14: Return rt , st+1

encourages the agent to constantly improve. Moreover,
the addition of loss in the reward is empirically critical
to addressing concerns raised by [10]; that the policies of
popular NAS algorithms become indistinguishable from ran-
dom search. As Figure 2 shows, without a loss component,
the actor policy eventually degenerates into random search.

Finally, the agent sets the next state to the selected archi-
tecture, i.e., st+1 = αdt , and continues the process to find a
better architecture.

D. EXPLORATION AND EXPLOITATION
The goal of DDAS is to generate a Pareto frontier of archi-
tectures in terms of accuracy and FLOPS through a single run
of the algorithm. Intuitively speaking, we can also obtain the
Pareto frontier by warming up the supernet and then applying
random search or evolutionary algorithms over architectures
that inherit weights from the supernet. In contrast, optimiza-
tion schemes such as DARTS, SNAS, etc., are not capable of
depicting the Pareto frontier in one run, as gradient descent
will drive these schemes to train a single or a few large
architectures fully in order to minimize the validation loss of
the selected architecture(s).

The ability of DDAS to discover a better Pareto frontier
in one run critically depends on a balance between explo-
ration and exploitation processes. DDPG splits exploration
and exploitation into two sequential phases. Since DDPG is
off-policy, it benefits from the use of an experiential replay
buffer. In the first phase, neither the actor nor the critic is
used or updated. Instead, the agent accumulates a diverse
collection of state transitions in its replay buffer by sampling
actions from a random distribution. In the second phase,
i.e., the exploitation-centered phase, actions are generated
by the actor using Equation 2. The agent samples a random
batch B of experiences from its replay buffer and uses them to
update the networks. First, the discounted estimation of future
rewards [13] for an arbitrary step i is computed as,

r ′i = γQ
′(si+1, µ′(si+1)), (5)

where Q′ and µ′ are the target networks used to aid in the
training procedure. We refer the reader to [13], [31] for

FIGURE 2. Comparison of variants of DDAS with Random Search (a) on
CIFAR-10 under different reward functions. Variants include DDAS using
only the accuracy term (b), only the loss term (c) and the full reward (d).
After 500 initial steps of random sampling, DDAS becomes unstable and
nearly indistinguishable from random search when either the loss or
accuracy terms are removed from the reward. We run each variant 3 times
and plot the mean and standard deviation.

further details. The following loss is then used to update the
critic,

LCritic =
1
|B|

∑
i∈B

(ri + r ′i − Q(si, ai))
2. (6)

The actor network is then updated using a sampled policy
gradient from the critic,

LActor =
1
|B|

∑
i∈B

Q(si, µ(si)). (7)

110966 VOLUME 9, 2021

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

One caveat of Equation 6 is that given our definition of
the reward, the actor will learn to sample the same (and
most likely large) architecture repeatedly regardless of the
state in order to train this architecture fully to increase the
validation performance. In DDAS, we introduce exploration
in architecture sampling through the use of two types of noise.

First, we introduce exploration during the exploitation
phase by adding a Gaussian noise to the actor’s output in
every step, as in Equation 2. However, it may not be strong
enough to completely randomize the actions. Rather, it per-
turbs α such that when discretized into αd , it is in the same
neighborhood of the actor’s output. If the agent samples from
a small neighborhood repeatedly, the validation performance
will be guaranteed to improve, as the shared weights are
repeatedly updated.

To further encourage exploration in DDAS, we introduce
a new phase to follow the normal exploitation phase, where
we replace the Gaussian noise by the Ornstein-Uhlenbeck
process [32], which is more effective than Gaussian
noise at overwriting actions [13]. Thus, we do not add
Ornstein-Uhlenbeck process to the actor output in every step.
When the agent detects that α has been stagnant, measured by
observing minimal changes from step-to-step, for a number
of steps Tstag, the new noise is added to the actor’s output
for the next Tstag steps. When the noise is off, the agent
will focus on a small number of architectures that the critic
deems worthwhile and continuously train their weights, driv-
ing up the validation performance. On the other hand, when
the Ornstein-Uhlenbeck process is temporarily introduced,
the newly selected architectures will become radically differ-
ent, yet still having a few shared weights overlapped with pre-
viously selected architectures. This overlap of shared weights
can be used to boost the performance of the newly selected
architectures.

Through a combined use of the above two types of noise,
the DDAS agent can switch attention to seldom sampled
architectures including the smaller architectures, so that the
Pareto front in terms of validation accuracy and FLOPS can
be uplifted.

E. COMPUTATIONAL COMPLEXITY
The time complexity of differentiable NAS algorithms [5],
[6], [20], [21], [33] is linearly bound by the number of
epochs the search algorithm will execute for, which itself
is a hyperparameter. While this bound provides a simple
means to estimate the time it will take an experiment to run,
the time to execute a single epoch can vary depending on the
type of algorithm used. For example, DARTS [5] performs
search using first and second-order gradient descent, the latter
optimization being the more computationally expensive and
slower of the two.

In contrast, the time complexity of DDAS can be measured
using three metrics: The number of one-shot training epochs,
the total number of RL time-steps T , and the number of
minibatch updates per step M as in Algorithm 2. Given that
supernets can be trained once and re-used multiple times,

the computational cost of the first factor is seldom incurred.
T is analogous to the number of epochs that differentiable
NAS algorithms run for, as it is the number that directly
quantifies the search time of the algorithm. However, most
differentiable NAS algorithms run for less than 100 epochs,
each epoch representing one whole pass through the training
dataset. Meanwhile, one time step does not constitute one
whole pass through the dataset. Rather, theM batches of data
used per step constitute a small fraction of the entire dataset.
This allows the search algorithm to report the performance of
more architectures as many time steps can be executed in the
time it takes to execute a full epoch.

IV. EXPERIMENTAL RESULTS
In this section we present and discuss the experimental results
of the proposed DDAS. We first elaborate on our experimen-
tal setup in terms of dataset, one-shot supernet models as
well as enumerate on several algorithm configurations to be
tested. We then perform search and evaluation experiments.
To illustrate the effect of different algorithm configurations,
we provide plots of accuracy growth over the course of a
search experiment as well as Pareto frontiers of the best
architectures found during search and evaluation.

A. EXPERIMENTAL SETUP
We perform our experiment on two image classification
datasets, CIFAR-10 and CIFAR-100 [16]. Both contain 60k
images each, of dimension size 32× 32, with ten classes for
CIFAR-10 and one hundred classes for CIFAR-100. Archi-
tecture search is performed on a data split similar to DARTS,
resulting in a training set DT , validation set DV , and test set
with sizes 25k, 25k, and 10k samples, respectively. Further
evaluation of the best architectures found involves training
on the official CIFAR-10 and CIFAR-100 splits that partition
the data into 50k training samples and 10k testing samples.

1) WARMED-UP SUPERNET
We warm up all our architecture search experiments by
training a 6-cell (with 4 normal cells and 2 reduction cells)
one-shot supernet for 75 epochs on DT with all elements of
α set to one. Each cell contains 7 nodes, of which there are
2 input nodes, 1 output node and 4 intermediate nodes. There
are 8 operations and 14 edges. Supernet training typically
takes less than 6 GPU hours.

2) ARCHITECTURE SAMPLING WITH DDAS
We initialize DDAS with the warmed up supernet and start
the architecture sampling process. For every sampled archi-
tecture, the supernet is trained for 25 batches on DT to fit
the supernet’s weights to their new architecture configuration.
We evaluate a total of 4 methods, consisting of a Random
Search baseline and 3 different DDAS configurations. Given
that the additive noise Zt added to actions ‘‘can be chosen
to suit the environment’’ [13], these configuration methods
are primarily differentiated by the choice of Zt and how it is
applied. All 4 methods are provided below:

VOLUME 9, 2021 110967

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

FIGURE 3. Search validation curves on CIFAR-10 and CIFAR-100 as a function of RL steps. The ‘One-shot’ line represents the best
validation accuracy the warmed-up supernet obtained prior to architecture search. It is horizontal, as the value corresponds to the
Acc(OS) scalar used in Equation 3.

1) Random Search (RS): Following [9], we search
on the supernet by randomly sampling architec-
tures from Uniform(0,1)|E|×|O| before performing
discretization.

2) Noiseless (DDAS-NL): After an initial 500 steps of
exploration, DDAS enters an almost purely determin-
istic exploitation phase where Zt = U (−10−5, 10−5).

3) Gaussian (DDAS-G): Same asDDAS-NL, we engender
further exploration during the exploitation phase by
disrupting the actor’s output at with a noise sampled
from a Normal distribution, Zt = N (0, 0.05).

4) 4-Stage (DDAS-4S): Behaves like DDAS-G for the
first 500 steps of the exploitation phase. In the last
500 steps of the experiment, the additive noise is turned
off by default, Zt = 0, then re-enabled sporadically.
The key difference is that the agent keeps track of
selected architectures. Algorithm 1 reduces the number
of operation-performing edges per cell type from 14 to
8, for a total of 16 across both cell types. The agent
considers two architectures to be similar if less than
6 of the 16 activated operation-edge pairs between the
normal and reduction cells are different. If the agent
detects that it has been selecting a similar architecture
for Tstag = 32 steps in a row, then a large, [32] noise
will be added to the actor output for the next Tstag steps.

Each method runs for 1,500 steps and takes 1 GPU day to
finish. For each experiment we obtain the best architecture
found by DDAS with the highest validation accuracy on
a given dataset. For every architecture sampled by DDAS,
we calculate both the number of FLOPS and model param-
eters assuming the architecture was instantiated on a 6-cell
network. We construct the Pareto frontier from each sam-
pled architecture’s validation accuracy on the supernet, con-
strained by the number of FLOPS/parameters on the 6-cell
network.

In the second half of our experiments, we forwarded many
of the architectures found on the FLOPS Pareto frontiers for
further evaluation on larger models for 600 epochs each. The

number of cells used were 10 and 20 for CIFAR-10 and
CIFAR-100, respectively.

Lastly, we took the absolute best performing architecture
from each experimental setting and compared their test accu-
racies against those of several related NAS algorithms. For
comparisons on CIFAR-10, we re-trained these architectures
using 20 cell models in order to perfectly match the hyperpa-
rameter choices of DARTS [5].

B. EVALUATION AND COMPARISON
Search validation curves for all experiments are illustrated by
Figure 3. All variants of DDAS demonstrate a clear supe-
riority over random search. The performance of DDAS-NL
is the quickest to rise following the initial exploration steps.
Moreover, the behaviour of DDAS-NL in Figure 3 on both
datasets is consistent with Figure 2(d). A sharp rise in accu-
racy occurs after the initial steps of random actions before
performance tapers off as it approaches the one-shot accuracy.
DDAS-G and DDAS-4S take a few hundred additional steps
before they surpass random search. Additionally, dips and
rises in the plots of DDAS-4S clearly denote the time steps
where a large noise is added to the actor output. The validation
Pareto frontiers found by our search experiments, in terms
of FLOPS, are presented in Figure 4. Architectures on these
curves were selected for further evaluation through larger
models. Note how well DDAS-NL appears to outperform all
other methods in terms of validation performance over time,
Pareto frontier regions corresponding to smaller FLOPS are
dominated by DDAS-G and DDAS-4S.

We adopt the definition introduced by [11] for measuring
the width and depth of NAS cells. These metrics are a means
of quantifying the degree of exploration the search algorithm
is performing in terms of the cell topologies selected among
high-performing architectures. A narrow distribution of cell
widths centered around a high number indicates a systemic
and undesirable preference for shallower architectures and
therefore low exploration. Denoted with ‘c’, the width is the
average number of edges originating from the input nodes,

110968 VOLUME 9, 2021

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

FIGURE 4. Search Pareto frontiers constraining accuracy against FLOPS. Each line is generated by one of the four search methods.
Numerical annotations denote the step t where an architecture was sampled. Any step below 500 is guaranteed to be generated from
a uniform random distribution.

FIGURE 5. Search histograms of normal and reduction cell width distributions on CIFAR-10 and CIFAR-100 across architectures in the
top 5% accuracy percentile. Width is defined as the average number of edges (operations) originating from the two input nodes, and
can take values between 0.5 and 4.

while the depth is the length of the longest path between the
input and output nodes.We exclude the ‘none’ operation from
these calculations. Put quantitatively, in the case of DARTS,
a ‘wide cell’ has a width of approximately 3c or more, corre-
sponding to at least 6 of the 8 edges in E originating from one
of the input nodes, rather than linking one intermediate node
to another. More specifically, the normal cell found by the
second-order DARTS [5] has a width and depth of 3.5c and 3,
respectively, while the reduction cell has a width of 2.5c and
a depth of 3.

Figure 5 displays the histograms of cell widths for cells in
the top 5% accuracy percentile for all experiments on both
datasets. The distribution of architectures for both datasets
resembles that of a Gaussian distribution centered around
2.5; corresponding to 2-3 edges per input node, in the case
of CIFAR-10. For CIFAR-100, the distribution of normal
cells more closely resembles a uniform distribution bounded
between 2 and 4. Reduction cell widths follow a narrow
Gaussian centered around 2.5. Regardless of the distribution,
it is clear that respectable accuracy metrics can be found
across a spectrum of cell widths—high accuracies are not
limited to a narrow range of cells with large widths. These
findings corroborate our claim that NAS algorithms should

incorporate a higher degree of exploration and avoid being
biased toward a specific type of topologies.

Test set Pareto frontiers, in terms of both FLOPS and total
number of parameters on CIFAR-10 and CIFAR-100, are
given by Figures 6 and 7, respectively. By test set accuracy,
the Pareto frontiers of all three DDAS configurations are
higher than those of RS in at least one region. This reflects
the search curves where their architectures were chosen from.
DDAS-NL is the sole exception to this observation.DDAS-NL
produced the highest test score on CIFAR-10 and the highest
validation scores on both datasets. According to Figure 4,
the only architectures DDAS-NL chose that had a small
number of FLOPS were sampled during the initial 500-step
exploration phase, or shortly afterward. When comparing
DDAS-G to DDAS-4S we observe that their evaluation Pareto
frontiers almost identically match the ones generated during
the search. On CIFAR-10, DDAS-G is better at sampling
low-FLOPS architectures, but is eventually overtaken by
DDAS-4S. Meanwhile, on CIFAR-100, the DDAS-4S Pareto
frontiers completely dominate DDAS-G on both search and
evaluation.

Our best cell architectures for CIFAR-10 and 100 are given
by Figures 8 and 9, respectively.With exception to the normal

VOLUME 9, 2021 110969

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

FIGURE 6. Test set evaluation Pareto frontiers for CIFAR-10 constraining accuracy against FLOPS or parameters. Points correspond to
architectures present on the search Pareto frontier for a given search scheme. All models were trained using 10 cells - 8 normal and
2 reduction.

FIGURE 7. Test set evaluation Pareto frontiers for CIFAR-100 constraining accuracy against FLOPS or parameters. Points correspond to
architectures present on the search Pareto frontier for a given search scheme. All models were trained using 20 cells, including
18 normal cells and 2 reduction cells.

FIGURE 8. Best set of cells found on CIFAR-10, annotated with width (c) and depth according to [11]. Green nodes represent input from the two
previous cells in the network. Edges between intermediate nodes (blue) and the cell output (yellow) do not perform operations and are not
considered a part of E . These cells were found using the noiseless configuration (DDAS-NL) at step 833.

FIGURE 9. Best set of cells found on CIFAR-100, annotated with width (c) and depth according to [11]. Green nodes represent input from the two
previous cells in the network. Edges between intermediate nodes (blue) and the cell output (yellow) do not perform operations and are not
considered a part of E . These cells were found using the four-stage configuration (DDAS-4S) at step 1483.

cell for CIFAR-100, no cell has a width above 3 nor a depth
smaller than 3. This demonstrates that DDAS is not prone
to the same issue as cells found by other NAS algorithms as
listed by [11]. That is, the layout of the cells do not resemble a
wide, shallow neural network; each input is not simply passed

to each node independently before being aggregated at the
output. Instead, the inputs are subject to a series of sequential
operations as they are passed from one node onto the next.

Next, we compare the test performance of the best archi-
tectures found by all four of our methods to those reported by

110970 VOLUME 9, 2021

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

TABLE 1. Comparison of DDAS schemes with related NAS weight sharing algorithms in terms of test accuracy, FLOPS and number of parameters.

several related NAS algorithms that use weight sharing and
rely on a fewGPUs. The results are given in Table 1.Weman-
ually evaluated the publicly available architectures found by
DARTS first-order and second-order on CIFAR-100.

Table 1 provides evidence that DDAS is superior to
ENAS [8], GDAS [21] and SNAS [6], where the latter
two employs exploration in the form of Gumbel Softmax.
The only architectures whose scores are higher than DDAS
are ProxylessNAS [7] on CIFAR-10 and DARTS [5] on
CIFAR-100. Both methods achieve their high accuracy
metrics at the cost of substantially larger model sizes.

Comparing our experimental configurations against each
other, we observe the superiority of DDAS-NL and Random
Search over DDAS-G and DDAS-4S on CIFAR-10. Both of
these algorithms favored architectures with a much higher
number of parameters than DDAS-G and DDAS-4S. Most
notably Random Search is the more inefficient of the two.
Moreover, the situation is partially true on CIFAR-100,
where DDAS-G and DDAS-4S reign supreme with fewer
parameters.
DDAS-NL is most comparable to gradient-based NAS

algorithms due to a low, almost negligible amount of explo-
ration during exploitation. Conversely, DDAS-4S encorpo-
rates mechanisms that allow it to actively fight against the
sampled policy gradient of its critic, while DDAS-G does not
heavily depart from the original specification of DDPG given
by [13]. On CIFAR-100 DDAS-4S completely outperformed
DDAS-NL, both in terms of performance and parameter
efficiency. CIFAR-100 is inherently more difficult to classify
than CIFAR-10 due to having the same number of samples
but 10 times as many classes and therefore 10 times fewer
samples per class. Thus, it can be said that DDAS-4S demon-
strates the benefits of modifying RL algorithms beyond the
scope of their original theory for use in NAS problems.
In addition, we approximated the slope of accuracy against
FLOPS or parameters using linear regression. For CIFAR-10,
we found that test accuracy increased at rates of 2.86%
per gigaFLOPS and 2.123% per million parameters, both
with linear correlations over 0.93. For CIFAR-100, these
values are higher at 4.03% per gigaFLOPS and 3.196%
per million parameters, linearly correlated over 0.86. These

TABLE 2. Spearman correlation coefficients between validation and
evaluation accuracies for Pareto front cells.

metrics quantify the small loss of accuracy entailed by
downsizing model size and indicate the ability of DDAS to
find resource-efficient architectures for practical deployment.

We also computed the ranking correlation between the
validation and evaluation scores of all Pareto frontier archi-
tectures we evaluated. The Spearman coefficients are given
in Table 2. RandomSearch achieves the highest correlation on
both datasets as it performs a uniform scan of the search space
and does not focus on specific regions. As shown in Figures 4,
Random Search performance struggles to improve past 45
megaFLOPS, resulting in only a handful of architectures
being selected in high FLOPS regions. Thus, most of the Ran-
dom Search architectures are located in low FLOPS regions
where small increases in FLOPS have a greater impact on
accuracy. On both datasets, all three DDAS configurations
achieve high correlation coefficients that exceed 0.5. This is
because DDAS is a guided algorithm that searches dispro-
portionately and focuses on learningwhere high-performance
architectures are likely to be found, and therefore finds larger
architectures where the choice of operation and topology play
a larger role in determining accuracy.

Finally, the search cost of DDAS is relatively comparable
to DARTS. On a single RTX 2080 Ti GPU, DDAS takes
approximately 6 GPU hours to train a one-shot model which
only needs to be pre-trained once and can be re-used in
multiple searches. Search itself costs approximately 1 GPU
day to run for 1,500 steps. It is worth noting that DARTS, and
GDAS ran their search experiments four or three times with
different random seeds in order to pick the best architecture
according to the validation accuracy. Repeated searches are
a mechanism to encourage exploration. In contrast, DDAS
is designed to explore, train and identify a range of good
architectures in the same search run.

VOLUME 9, 2021 110971

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

V. CONCLUSION
In this paper, we introduce Deep Deterministic Architecture
Search (DDAS), an algorithm based on deep deterministic
policy gradient (DDPG) in Reinforcement Learning, to thor-
oughly explore a neural architecture search space and per-
form neural architecture search by sampling and training
architectures on a weight-sharing supernet. Unlike prior rein-
forcement learning schemes for NAS which use stochastic
policy gradient to sample architectures, DDAS uses a deter-
ministic policy and leverages the ability of DDPG to handle
high-dimensional control in a continuous space. Coupled
with a loss-based reward function, the policy of DDAS is dis-
tinct from random search and can learn to focus on important
regions of the search space.

Furthermore, DDAS addresses the lack-of-exploration
issue present in recent optimization-based NAS frameworks
via several exploration schemes. Unlike gradient-based NAS
schemes such as DARTS or GDAS, which perform mul-
tiple search runs to produce a single architecture, DDAS
instead performs one long search experiment which produces
a Pareto frontier containing a spectrum of architectures. As
a result, DDAS is capable of generating architectures for
flexible deployment on target hardware where FLOPS or
model size may be constrained, without the need to incor-
porate a specific resource penalty into the reward. Addition-
ally, the cells produced by DDAS are not always wide and
shallow or biased toward a specific type of topologies. We
performed extensive experiments on CIFAR-10 and CIFAR-
100 in a wide range of experimental settings. With a test
accuracy of 97.27%, experimental results have shown that
DDAS is capable of generating architectures that outperform
the original DARTS with a lower number of parameters on
CIFAR-10. On CIFAR-100, DDAS finds an architecture that
is capable of achieving 82.00% test accuracywith only 3.14M
parameters, outperforming GDAS. In addition, in a single
search algorithm run for 1 GPU day, DDAS can produce
Pareto frontiers that outperform random search based on a
warm-started supernet, demonstrating its superior capability
to automatically explore and discover important regions of a
neural architecture search space.

APPENDIX
A. OPERATIONS
The operation setO used in the DARTS search space consists
of the following:

1) None (Zero input tensor)
2) Maximum Pooling 3× 3
3) Average Pooling 3× 3
4) Skip Connection
5) Separable Convolution 3× 3
6) Separable Convolution 5× 5
7) Dilation Convolution 3× 3
8) Dilation Convolution 5× 5
Wemake no change to these operations relative to how they

are implemented by DARTS [5] and allow each of them to be
selected by Algorithm 1.

B. HYPERPARAMETERS IN SEARCH
Our weight-sharing search models, modified from DARTS
[5], all have 6 cells (4 normal and 2 reduction cells). Data
enters through a head which applies a channel multiplier
of 16 as well as a few preliminary convolution operations,
before being passed on to the cells. A batch size of 64 is
used at all times, and each supernet is trained over the course
of 75 epochs on the 25k training set, DT . We followed the
precedent set by DARTS [5] and utilized a stochastic gradient
descent optimizer with momentum. During one-shot super-
net training, the initial learning rate is set to 2.5 × 10−2,
but is annealed down to 10−3 by a cosine schedule with-
out restarts [34]. When searching for an architecture using
DDAS, we set the learning rate to a constant value of 10−3.
For reproducibility, all experiments are initialized with the
same random seed values of 2 for search and 0 for evaluation.
Random seeds values of 0, 1 and 2 were used to generate
Figure 2.

C. HYPERPARAMETERS USED IN EVALUATION
Once a cell architecture is found and sent for evaluation
(testing), the tested network consists of 10 or 20 cells for
CIFAR-10 and CIFAR-100, respectively. The channel multi-
plier present at the beginning of a network is increased to 36.
The same cosine annealed SGDwith momentum optimizer is
used here, except now the learning rate is annealed down to a
value of 0 over the course of every experiment, all of which
lasted 600 epochs with a batch size of 96. Finally, we also
made use of DARTS path dropout feature, with a probability
of 0.2, and an auxiliary head with a weight of 0.4.

When further evaluating the best CIFAR-10 architectures
for Table 1, we re-ran the evaluation experiments with
20 cells. This allowed us to directly compare our results with
those of DARTS [5]. In all experiments, we made use of
Cutout [35] using the recommended lengths for CIFAR-10
and CIFAR-100.

D. REINFORCEMENT LEARNING
HYPERPARAMETERS IN DDAS
Wefirst describe the hyperparameters common to all versions
of DDAS, before listing the hyperparameter discrepancies
among different DDAS versions in Table 3. Our RL code is
based off of [36].

The actor and critic networks of DDAS are both MLPs
with 3 hidden layers and 256 neurons in each layer that
receive vectorized α matrices as input. Both networks are
trained using Adam [37] with its default parameters of Eβ =
(0.9, 0.99) and learning rates of 10−4 and 10−3, respectively.
ReLU [38] is used as the internal activation function for
both the actor and the critic. However, the actor’s final layer
uses a sigmoid activation (σ) to truncate the output into the
range (0, 1). The critic does not utilize any final activation
at all, because it produces a scalar. The target networks (see
DDPG [13] for details) are synchronized at every step using
a mixing coefficient of 10−3. The replay buffer is truncated
to only hold experiences from the last 500 time steps during

110972 VOLUME 9, 2021

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

TABLE 3. Hyperparameters specific to different versions of DDAS
algorithms.

Phase 4. The size of the buffer is 106 at all other times. The
number of experiences, |B|, sampled from the replay buffer is
always 64. The discount factor γ is set to 0.99.

DDAS uses a Gaussian noise N (0, 0.05) during its
exploitation phase (DDAS-G) before adopting the Ornstein-
Uhlenbeck [32] process for its final, fourth stage (DDAS-4S).
Unlike DDPG [13], the actor and critic networks are com-
pletely separate with no overlap between their parameters.
We do not apply any regularization to either network.

E. COMPUTING PLATFORMS
Workstations used to run our experiments were equippedwith
Threadripper 2990WX processors, with two exceptions: One
computer used a Ryzen 9 3900X, and the other was equipped
with a Intel Core i9-9900X. All systems were equipped with
dual RTX 2080 Ti GPUs.

REFERENCES
[1] D. R. So, C. Liang, and Q. V. Le, ‘‘The evolved transformer,’’ 2019,

arXiv:1901.11117. [Online]. Available: http://arxiv.org/abs/1901.11117
[2] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforcement

learning,’’ in Proc. Int. Conf. Learn. Represent., 2017.
[3] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, ‘‘Under-

standing and simplifying one-shot architecture search,’’ in Proc. Int. Conf.
Mach. Learn., 2018, pp. 550–559.

[4] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, ‘‘Single
path one-shot neural architecture search with uniform sampling,’’ in Proc.
Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 544–560.

[5] H. Liu, K. Simonyan, and Y. Yang, ‘‘DARTS: Differentiable architecture
search,’’ in Proc. Int. Conf. Learn. Represent., 2019.

[6] S. Xie, H. Zheng, C. Liu, and L. Lin, ‘‘SNAS: Stochastic neu-
ral architecture search,’’ 2018, arXiv:1812.09926. [Online]. Available:
http://arxiv.org/abs/1812.09926

[7] H. Cai, L. Zhu, and S. Han, ‘‘ProxylessNAS: Direct neural architecture
search on target task and hardware,’’ in Proc. Int. Conf. Learn. Represent.,
2019.

[8] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, ‘‘Efficient neural archi-
tecture search via parameters sharing,’’ in Proc. Int. Conf. Mach. Learn.
PMLR, 2018, pp. 4095–4104.

[9] L. Li and A. Talwalkar, ‘‘Random search and reproducibility for neu-
ral architecture search,’’ in Uncertainty in Artificial Intelligence. 2020,
pp. 367–377.

[10] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, ‘‘Evaluating the
search phase of neural architecture search,’’ in Proc. ICLR, 2020.

[11] Y. Shu, W. Wang, and S. Cai, ‘‘Understanding architectures learnt by cell-
based neural architecture search,’’ in Proc. Int. Conf. Learn. Represent.,
2020.

[12] X. Jin, J. Wang, J. Slocum, M.-H. Yang, S. Dai, S. Yan, and J. Feng, ‘‘RC-
DARTS: Resource constrained differentiable architecture search,’’ 2019,
arXiv:1912.12814. [Online]. Available: http://arxiv.org/abs/1912.12814

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. Int. Conf. Learn. Represent., 2016.

[14] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘‘Bench-
marking deep reinforcement learning for continuous control,’’ in Proc. Int.
Conf. Mach. Learn., 2016, pp. 1329–1338.

[15] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn. PMLR, 2014, pp. 387–395.

[16] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny
images,’’ Tech. Rep., 2009. [Online]. Available: https://www.cs.toronto.
edu/~kriz/learning-features-2009-TR.pdf

[17] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[18] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 4780–4789.

[19] Y. Zhang, Z. Lin, J. Jiang, Q. Zhang, Y. Wang, H. Xue, C. Zhang,
and Y. Yang, ‘‘Deeper insights into weight sharing in neural architec-
ture search,’’ 2020, arXiv:2001.01431. [Online]. Available: http://arxiv.
org/abs/2001.01431

[20] X. Chen, L. Xie, J. Wu, and Q. Tian, ‘‘Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evalua-
tion,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1294–1303.

[21] X. Dong and Y. Yang, ‘‘Searching for a robust neural architecture in four
GPU hours,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1761–1770.

[22] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Binaryconnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[23] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2820–2828.

[24] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[26] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[27] B. Wu, K. Keutzer, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu,
Y. Tian, P. Vajda, and Y. Jia, ‘‘FBNet: Hardware-aware efficient
ConvNet design via differentiable neural architecture search,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 10734–10742.

[28] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu,
and D. Marculescu, ‘‘Single-Path NAS: Designing hardware-efficient con-
vnets in less than 4 hours,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl.
Discovery Databases. New York, NY, USA: Springer, 2019, pp. 481–497.

[29] T. Elsken, J. H. Metzen, and F. Hutter, ‘‘Efficient multi-objective neural
architecture search via Lamarckian evolution,’’ 2018, arXiv:1804.09081.
[Online]. Available: http://arxiv.org/abs/1804.09081

[30] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, ‘‘Once for all: Train one
network and specialize it for efficient deployment,’’ in Proc. Int. Conf.
Learn. Represent., 2020.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforcement
learning,’’ in Proc. NIPS Deep Learn. Workshop, 2013. [Online]. Avail-
able: https://www.cs.toronto.edu/ vmnih/docs/nipsdlw2013.bib

[32] G. E. Uhlenbeck and L. S. Ornstein, ‘‘On the theory of the Brownian
motion,’’ Phys. Rev., vol. 36, p. 823, Sep. 1930.

[33] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong, ‘‘PC-
DARTS: Partial channel connections for memory-efficient architecture
search,’’ in Proc. Int. Conf. Learn. Represent., 2019.

[34] I. Loshchilov and F. Hutter, ‘‘SGDR: Stochastic gradient descent with
warm restarts,’’ in Proc. ICLR, 2017.

[35] T. DeVries and G. W. Taylor, ‘‘Improved regularization of convolutional
neural networks with cutout,’’ 2017, arXiv:1708.04552. [Online]. Avail-
able: http://arxiv.org/abs/1708.04552

[36] S. Zhang. (2018). Modularized Implementation of Deep RL
Algorithms in PyTorch. [Online]. Available: https://github.com/
ShangtongZhang/DeepRL

[37] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. Int. Conf. Learn. Represent., Dec. 2014.

[38] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. 27th Int. Conf. Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

VOLUME 9, 2021 110973

K. G. Mills et al.: Exploring NAS Space via Deep Deterministic Sampling

KEITH G. MILLS received the B.Sc. (Hons.)
and M.Sc. degrees in computer engineering from
the University of Alberta, in 2018 and 2020,
respectively. He is currently pursuing the Ph.D.
degree under the supervision of Dr. Di Niu. He is
currently an Associate Researcher and an Intern
at Huawei Technologies Canada Company Ltd.,
Markham, Canada. His research interest includes
simplifying and generalizing neural architecture
search problems.

MOHAMMAD SALAMEH received the Ph.D.
degree from the University of Alberta under the
supervision of Dr. Greg Kondrak and Dr. Colin
Cherry, with a main focus on statistical machine
translation and sentiment analysis. He is cur-
rently a Senior Researcher at Huawei Technolo-
gies Canada Company Ltd. He is also working on
neural architecture searchwith a focus on gradient-
based and reinforcement learning approaches.
He co-organized Determining Sentiment Intensity

in Tweets (SemEval2016) and Affects in Tweets (SemEval2018) shared
tasks.

DI NIU received the B.Eng. degree from Sun
Yat-sen University, in 2005, and the M.Sc. and
Ph.D. degrees from the University of Toronto,
in 2009 and 2013, respectively. He is currently
an Associate Professor with the Department of
Electrical and Computer Engineering, Univer-
sity of Alberta, specialized in the interdisci-
plinary areas of distributed systems, data mining,
machine learning, text mining, and optimization
algorithms. Hewas a recipient of the Extraordinary

Award of the CCF-Tencent Rhino Bird Open Grant 2016 for his research
on natural language processing and machine learning for web document
understanding at scale.

FRED X. HAN received the M.Sc. degree in
electrical and computer engineering from the
University of Alberta, in 2019, with specialization
in software engineering and intelligent systems.
He is currently a Research Associate at Huawei
Technologies Canada Company Ltd. His research
interests include deep learning, reinforcement
learning, data mining, knowledge discovery, and
automated machine learning.

SEYED SAEED CHANGIZ REZAEI received the
Ph.D. degree in graduate studies from the Uni-
versity of Waterloo, with a focus on network
information theory and combinatorics and opti-
mization. He has been working as a Senior
Machine Learning Researcher at Huawei Tech-
nologies Canada Company Ltd., since April 2019.
Before Joining Huawei, he was a Researcher in
optimization, graph theory, and machine learning
at 1QBit Information Technology, and also held a

postdoctoral position with the Department of Mathematics, Simon Fraser
University.

HENGSHUAI YAO received the Ph.D. degree
in reinforcement learning from the Reinforce-
ment Learning and Artificial Intelligence (RLAI)
Laboratory, Department of Computing Science,
University of Alberta, in 2014. His thesis is on
model-based reinforcement learning with linear
function approximation. During his Ph.D. studies,
he worked with Csaba Szepesvari, Rich Sutton,
Dale Schuurmans, and Davood Rafiei, where he
working on reinforcement learning theory, algo-

rithms, and web applications. He joined NCSoft Game Studio, San
Francisco, in 2016, where he working on reinforcement learning in games.
He moved back to Canada and joined Huawei, in 2017. He was recently
appointed as an Adjunct Professor with the Department of Computing
Science, University of Alberta.

WEI LU (ROBIN) received the master’s degree
in electrical engineering from Southeast Univer-
sity, China. After he graduated from university,
he worked at Huawei as an IC Engineer in mobile
chipset design for two years. He then transferred
to Huawei Kirin Solution as a Software Engineer,
where he was a Senior Manager of User Experi-
ence Team, where he mainly focused on power
and performance. He is currently the Director
of Huawei Technologies Canada Company Ltd.,

Edmonton Research Center, and leading twoAI research teams in Edmonton.

SHUO LIAN received the Ph.D. degree from
the School of Electronic and Information Engi-
neering, Xi’an Jiaotong University, Xi’an, China.
He is currently a Technical Team Leader with
Model Optimization Team, Huawei Kirin Solu-
tion, Shanghai, China. His research interests
include deep learning, model optimization,
efficient algorithms, network measurement,
and hardware for computation-intensive AI
applications.

SHANGLING JUI is the Chief AI Scientist for
Huawei Kirin Chipset Solution. He is an expert
in machine learning, deep learning, and artifi-
cial intelligence. Previously, he was the Pres-
ident of the SAP China Research Center and
the SAP Korea Research Center, responsible for
2400 employees and 150 million USD research
and development annual budget. He was also the
CTO of Pactera, leading innovation projects based
on cloud and big data technologies. He is currently

an Expert Reviewer of the Project Committee for China-EU Science and
Technology Co-Operation and a Guest Professor of the Software Institute
of Beijing University. He has published various books and articles about the
Chinese software industry and big data analytics in China, U.K., Australia,
and the USA. He has 27 years of working experience in Germany, the USA,
and China. He received theMagnolia Award from theMunicipal Government
of Shanghai, in 2011.

110974 VOLUME 9, 2021

